Simport

A Family Owned Company Since 1975

Contributing to the Evolution of Disposable Laboratory Plasticware for 40 Years

www.simport.com

New Products

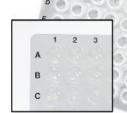


TABLE OF CONTENTS

Analyzer Cups	Deep Well Plates80-8
	Dishes, Petri
Bags, Sterile	DrainRack™
Bar Coding Facilities	Dishes, Weighing
Base Molds	Dissecting Boards
Beakers, Disposable	Dropette® Pipets
Bioblock [™] Deep Well Plates 80-85	
Biodisposer [™]	EasyDip™
Biopsy Bags	EcoTainer™
Biopsy Foam Pads	Embedding Rings
Biotube™ System	Embedding Cassettes
Block Mailer	
Blood Dilution Vials	Fibrin Cups
Bottles, Urine 5-7	FitsAll™ Caps
Boxes, Storage	Foam Pads
	FlexTainer™ Containers
Cabinets, Cassette	Funnels
Caps for Culture Tubes	Funnels, Cytology
Capinsert™	
Capsules, Tissue	Histosette® Cassettes
Cassettes, Tissue	HistoTainer™
Cassette Cover, Metal	Hitachi Analyzer Cups
Cassette Thermal Printing Foil	, ,
Cassettes for printers	no-loop™ Inoculating Loops
Cell Spreader	, , ,
Centrifuge Tubes	Jars, Microscope Slides
Centrifuge Tubes (micro)	,
Centrifuge Tube Racks	LockMailer™
Cliklock™ Microcentrifuge Tubes	Loops, Inoculating
Closures for Culture Tubes	Low Surface Tension Microcentrifuge Tubes10
Cluster Tubes	· ·
Combi-Box™	Macrosette® Cassette
Combi-Rack™	Marker Pen
Contact Plate	Micrewtube®
Containers, Collapsible	Microsette™ Cassettes
Containers, Specimen	Microcentrifuge Tubes
CoreDish®	Microcentrifuge Tube Rack
Cryogenic Vials	Micromesh [™]
Cryostore™ Storage Boxes	Microscope Slide Folder
Cryovial® Tubes and Accessories	Microscope Slide Mailer
Cups, Analyzer / Fibrin	Microscope Slide Storage45-4
Cultubes™	Microscope Slide Tray
Culture Tubes	Microtubes
Cytology Funnels	Microtube Racks
CytoSep Cyto Funnels	MultiRack™

TABLE OF CONTENTS

OneHand™ Rack	
Paraffin Block Mailer	11
PCRack TM	
PCR Tube Racks	
PCR Sealing Mat	
PCR Reaction Plates	
PCR Reaction Strips	
PCR Reaction Tubes	
PCR Sealing Film & Foil	
PCR Storage Boxes	
Petri Dishes	
Pierce-It™ Caps	
Pipets, Transfert	
Plates, Deep Well	
Plates, PCR	
Printing Facilities	
Tilling Facilities	
QuickLoad™ Cassettes	23, 34-41
Racks for Centrifuge Tubes	142-143
Racks for 1.1 ml Cluster Tubes	
Racks for Cryovial® and Micrewtube®	98, 142-143
Racks for Microcentrifuge Tubes	
Racks for PCR Tubes	110, 142
Racks for Test Tubes	142-143
Racks, Thermal Conductive	68-75
Rings, Embedding	42
Roller for Sealing Plates	111
Rotor-Gene™ Q PCR Consumables	109
Sample Cups	
Sample Tubes	135, 138-139
Sample Tube Storage Boxes	144-145
Sampling Bags	144-145
Scintillation Vials	141
Screw Caps with Septum	127, 137
SecureSeal™ Sealing Film and Foil	85, 111
SecurTainer™	16-18
Septum Screw Caps	119, 129
SeraNest™	
Sharps Containers	11
SlideFile™	46-47
SlideFolder™	59
SlideTray [™]	45
Slimsette™	31, 36, 40
SnapTwist® Micrewtube®	119
Specimen Collection Tube, Urinanalysis	138
Specimen Containers	9-19

Specimen Containers, Formalin Prefilled	54-59
Snap Cap Containers	9, 19
SnapTwist® Scintillation Vials	141
SpecTainer [™]	12-15
Spreader, Cell	21
SputEm [™] Collection Kit	10
StainTray [™]	51
Stoppers for Culture Tubes	. 131-132
Storage Box for Microcentrifuge Tubes	115
Storage Box for Micrewtubes®	129
Storage Boxes for Cryovial® Tubes	95-97
Storage Cabinets	43
$StoreBox^{^{\!{}_{\!\!M}}} Storage\ Boxes\ for\ Sample\ Tubes\ \ldots \ldots$. 136-137
Stylus, Diamond	45
Swabs	139
Swingsette™	32-33
Tamper Evident	117-119
Test Tube Racks	. 134-135
Thermal Conductive Racks	68-75
Thermal Printing Foil	45
Tissue Capsules	45
Tissue Cassettes	22-42
Titer Plates	80-85
Transfer Pipets	66-67
Tricorn™ Beakers	9
Tubes, Culture), 132-133
Tubes, Microcentrifuge	113-15
Tubes, Sample	5, 138-139
Tubes, Sterile 19, 77, 89-94, 122	2-123, 133
Twenty-four Hour Urine Collection Bottles	5-7
UniMailer™	52
UniRack™	
Unisette™	
Urinanalysis Specimen Collection Tube	
Urine Bottles	
Urine Specimen Containers	
Urine Collection Bottle	
Urine Collection System / Tube	
Urisafe®	
Uritainer™	
Ortalilei	1
Vacucap™	121
Vials	
vidio	,, 141
Water Specimen Container	
Weighing Dishes	
WorkStation Rack for Cryovial® and Micrewtube® .	
Write-on™ Marker Pen	

Simport Catalog Number Index

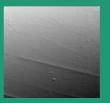
Cat. #	Page(s)	Cat. #	Page(s)	Cat. #	Page(s)	Cat. #	Page(s)
B350	5-6	M505T	39	M976	58	T403	132
B352	9	M506	29	P200	66-67	T404	131
B360	7	M506T	39	S207	141	T405	133
B700	9	M507	30	S220	141	T406	133
B720	10	M507SL	35	S500	142	T407	132
B721	10	M5077T	40	S501	142	T408	140
C200	10	M508	30	S510	143	T410	140
C300	11	M509	31	S600	143	T415	133
C566	12-14	M509SL	36	S610	143	T416	133
C567	12-14	M509T	40	S700	68-75	T417	21, 132
C570	11	M510	31	T100	77, 79	T420	140
C570	19	M510SL	36	T101	77, 79 78	T425	133
					76 78-79	T425	
C572	19	M510T	41	T105			133
C575	16	M511	31	T110	78-85	T500	134
C576	17	M512	42	T301	90	T501	135
C577	18	M513	42	T307	139	T502	135
C580	19	M515	32	T308	92	T504	137
C581	19	M516	32	T309	89	T514	136-137
C590	11	M517	33	T310	93	T550	138
D210	20	M517SL	37	T311	91	T552	138-139
D250	8	M517T	41	T312	98	T553	138
D251	8	M518	33	T313	98	V130	141
D252	8	M518SL	37	T314	94-95		
F490	9	M518T	41	T315	98		
L200	21	M590	45	T319	109		
L300	21	M618	48	T320	107-103		
M460	45	M620	48	T321	102		
M470	45	M625	48	T322	103		
M471	45	M630	49	T323	107		
M474	42-43	M700-50	46	T324	108		
M475	42-43	M700-100	47	T325	100-101		
M476	44	M710-50	46	T327	110		
M477	44	M710-100	47	T328-96	110		
M478	44	M750-20	59	T329	85, 110		
M480	23	M755-20	59	T330	113-115		
M480SL	23	M800	53	T331	115		
M480T	23	M900	50	T332	122, 124		
M481	23	M905	50	T334	122, 124		
M482	34	M906	50	T335	122, 124		
M483	34	M918	51	T336	123, 124		
M485	27	M919	51	T338	123, 124		
M485SL	34	M920	51	T339	123, 124		
M486	27	M921	51	T340	128		
M486SL	34	M950	52	T340TP	117-119		
M490	24	M958	54	T341	118		
M491	24	M959	55	T341TP	109-111		
M492	26	M960	54	T342	120		
M492T	38	M961	55 55	T343	120		
M493	26	M963	63	T345	128		
M493 M493T	38	M964	61	T347			
M4951 M495			62-63		127		
	43-45 25	M965		T350	129		
M498	25	M966	65	T360	129		
M499	25	M967	64	T361	127		
M502	28	M968	65	T400	130		
M503	28	M970	56-58	T401	131		
M505	29	M975	58	T402	123		

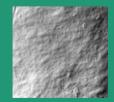
INTRODUCING THE NEXT GENERATION OF 24-HR URINE COLLECTION CONTAINERS

EcoTainer24™

Biodegradable is now available for the laboratory, Make It your choice and protect your environment,

B350ECO


24-Hr Urine collection container


The Simport® EcoTainer 24™ will biodegrade to become some of the soil's organic components in less than 7 years, instead of up to 400 years when using conventional plastics.

The Simport® URISAFE®, one of the most innovative 24-HR Urine Containers on the market today, is now available in a new version: The EcoTainer 24TM, a rapidly degradable URISAFE® Container. Plastics take hundreds of years to degrade naturally in the environment. The Simport® EcoTainer 24TM will biodegrade to become some of the soil's organic components in less than 7 years in constant contact with the soil instead of up to 400 years when using conventional plastics. The only condition that is necessary for the EcoTainer 24TM to biodegrade is constant contact with other degrading material. No heat, physical stress, oxygen or sunlight necessary. The EcoTainer 24TM has the ability to break down safely and quickly, by biological means, into the raw materials of nature and disappear into the environment.

- Does not contain heavy metals
- No negative effect to its physical properties
- No heat, light or mechanical stress needed for product breakdown
- No toxic residue
- Fully degradable within 7 years, aerobically or anaerobically

Image of high-density polyethylene surface after 12 months soil burial

Non biodegradable surface

Surface of the EcoTainer 24™

Uniquely designed to be the most user friendly

- The unique snap valve pour spout is easily popped open and offers dripless pouring
- 2 Specially designed leakproof screw cap with liner for safer transport
- 3 Large centrally located handle for good balance and ease of manipulation
- 4 Place container in upright position and sample volume can be read in 100 ml increments

The unique snap valve pour spout:

- Controlled flow rate for better handling of poured volumes
- · Reduced risks of aerosol contamination when pouring
- Eliminates splashing and exposure to hazardous body fluids

Low form design:

- · Convenient refrigerator storage with less wasted space
- Anatomically designed for ease of patient use
- Large 79 mm screw lid

Chemical and physical resistance

- Can be subjected to freezing, thawing and EtO gas sterilization without causing changes in materials or physical appearance
- · Metal free and resistant to hydrochloric acid
- Can be gamma sterilized

Cat. #	Vol. (Liters)	Dimensions (cm)	Qty/Cs
B350EC0	3	11.5 x 24.5 x 16.0 H	40

URISAFE

Uniquely designed to be the most user friendly

24-HR URINE COLLECTION CONTAINER

Container made of high-density polyethylene Cap made of polypropylene

On the 4 liter model, urine can be poured into a tube by simply tilting the container forward without having to lift it.

The innovative cap:

- Snap valve pouring spout incorporated
- Leakproof: a cap liner ensures safe sample transport

The unique snap valve pour spout:

- Easily popped open or pushed shut
- Offers dripless pouring
- Controlled flow rate for better handling of poured volumes
- Reduced risks of aerosol contamination when pouring
- · Eliminates splashing and exposure to hazardous body fluids

Low form design:

- · Convenient refrigerator storage with less wasted space
- Anatomically designed for ease of patient use

Large central handle:

- Can be gripped comfortably with three fingers
- · Permits pouring off of samples with ease and reduces fatigue

Chemically resistant:

- Metal, latex, zinc and fluorescence free
- Resistant to hydrochloric acid.
- Can be subjected to freezing, thawing and EtO gas sterilisation without causing changes in materials or physical appearance

Graduated vertically and horizontally:

- Graduations are easy to read
- · Place container upright and read in 100 ml increments
- · Can be gamma sterilized

- The unique snap valve pour spout is easily popped open and offers dripless pouring
- 2 Specially designed leakproof screw cap with liner for safer transport
- Large centrally located handle for good balance and ease of manipulation
- 4 Metal free and resistant to hydrochloric acid
- 5 Sample volumes can be read in 100 ml increments

The patented URISAFE® Urine Collection Containers are USER FRIENDLY to both patients and laboratory personnel. Two sizes are available: 3 and 4 liters.

Cat. #	Vol. (Liters)	Dimensions (cm)	Qty/Cs
B350	3	11.5 x 24.5 x 16.0 H	40
B350-4L	4	11.5 x 24.5 x 20.1 H	30

B350-4HCl Urisafe with HCl Preservative

This model offers the convenience of being prefilled with 30 ml 6N HCl. All patient instructions are clearly detailed on label.

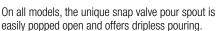
Each container is individually wrapped.

Cat. #	Vol. (Liters)	Dimensions (cm)	Qty/Cs
B350-4HCL	4	11.5 x 24.5 x 20.1 H	30

URITAINER"

24-HR URINE COLLECTION CONTAINER

Container made of high-density polyethylene Cap made of polypropylene



- 1 The unique snap valve pour spout is easily popped open and offers dripless pouring
- 2 Specially designed leakproof screw cap with liner for safer transport
- 3 Metal free and resistant to hydrochloric acid
- 4 Large handle can be gripped comfortably
- 5 Volume level read in 50 ml increments
- 6 Can be gamma sterilized

This more conventional style urine bottle is available in 2 sizes: $2.5\ L$ and $3.5\ L$. However, it incorporates some of the great features of the URISAFE 24-Hr Urine Collection Container.

Cat. #	Vol. (Liters)	Dimensions (cm)	Qty/Cs
B360-25	2.5	13.3 x 13.3 x 23.2 H	40
B360-35	3.5	13.3 x 13.3 x 29.5 H	24

Large handle can be gripped comfortably

The innovative cap:

- Snap valve pouring spout incorporated
- Leakproof: a cap liner ensures safe sample transport

The unique snap valve pour spout:

- Easily popped open or pushed shut
- Offers dripless pouring
- Controlled flow rate for better handling of poured volumes
- · Reduced risks of aerosol contamination when pouring
- · Eliminates splashing and exposure to hazardous body fluids

Large central handle:

- Can be gripped comfortably
- Permits pouring off of samples with ease and reduces fatigue

Chemically resistant:

- Metal and latex free
- · Zinc and fluorescence free
- · Resistant to hydrochloric acid
- Can be subjected to freezing, thawing and EtO gas sterilisation without causing changes in materials or physical appearance

Labels for URISAFE® & URITAINER™ Containers

Three optional labels are offered

- Patient identification label
- Patient instruction label
- Caution label

Cat. #	Description	Qty/Roll	QtyPk
B350-4	Patient identification label	100	1000
B350-5	Patient instruction label	100	1000
B350-6	Caution label	100	1000

Patent Name:		
roominam.		
Ra'. A		
Tost Raquirad:		
Preservative Added:		
riol Bothes Used:		
Total Volume Collected:		
Calactor Stating Times:	Hour	Dete
Calector Ending Times	Hour	Date

		cting a 24-Hour Urine Specim follow these instructors carefully.
Ask your laboratory bottle curing the col At the hour you cho toilet and flush as u	whether or not you lection period, ose to start the colle sual.	
 For the next 24 hou Be sure to urinate juindude this urine in Record the ending t 	rs, collect all your u ust when the 24 hou the bottle. time and date in the	ine in this bottle, roollecton period ends and space provided below.
D) For the next 24 hou E) Be sure to urinate ju- include this urine in F) Record the ending t G) Promptly bring the t	rs, collect all your uses when the 24 hou the bottle. time and date in the bottle back to the lab	ine in this bottle, robilection period ends and space provided below, oratory.
 For the next 24 hou Be sure to urinate juindude this urine in Record the ending t 	rs, collect all your u ust when the 24 hou the bottle. time and date in the	ine in this bottle, roollecton period ends and space provided below.

CAUTIONI
This bodd a contains a short a preservative chemical.
De not breade vaper. De not spill or get on skie.

D250

Antistatic Weighing Dishes

Made of antistatic polystyrene

Simport® Weighing Dishes will resist diluted acids, aqueous solutions, alcohols and bases. They are ideal for many applications such as weighing, dispensing or storing. They are safe, contaminant-free, biologically inert economical containers for weighing liquid or powdered samples in the laboratory. Flat bottom ensures perfect stability on countertops. They have a smooth surface providing accurate pour-outs with minimal sample loss and facilitating weighing of static-affected samples. Simport® dishes can also be used as quick freeze trays for sample material, discard trays for broken ampules, or mixing trays for small batches. Will withstand temperatures up to 80 °C.

Cat.#	Volume (ml)	Color	Dimensions (mm)	Qty/Pk	Qty/Cs
D250-1	10	White	40 x 40 x 8 H	500	4000
D250-2	100	White	78 x 78 x 25 H	250	500
D250-3	300	White	127 x 127 x 25 H	250	500

D251

Antistatic Pour Boats

Made of antistatic polystyrene

These 3 sizes of pour boats are specially made to facilitate dispensing of powdered and liquid materials. Smooth, uniform and economical, the molded material used is thicker than conventional weighing dishes. Can be used safely to weigh static-affected materials. Will withstand temperatures up to 80 °C.

Cat.#	Volume (ml)	Dimensions (mm)	Qty/Pk	Qty/Cs
D251-1	12	50 x 37 x 8 H	250	2000
D251-2	140	128 x 76 x 25 H	250	250
D251-3	270	180 x 117 x 25 H	250	250

D252

Antistatic Hexagonal Weighing Dishes

Made of antistatic polystyrene

Excellent for handling solids or liquids during weighing. Easily bent into pouring spouts, the dishes enable non-spill transfer. Molded hexagonal design provides greater balance protection and safety. Will not react with most substances. Suitable for weighing of static-affected samples. The dishes are stackable for easy storage. Will withstand temperatures up to $80\,^{\circ}\text{C}$.

Cat.#	Volume (ml)	Top I.D. (mm)	Base I.D. (mm)	Height (mm)	Qty/Pk	Qty/Cs
D252-1	9	35	25	10	500	4000
D252-2	58	70	47	20	250	500
D252-3	203	115	85	22	250	500
D252-4	355	130	95	30	250	500

B352

Specimen Bottle

Made of polypropylene

Features a dip-stick well for small volume testing and a pour spout for dripless pouring. Its square base makes it very stable. Can be autoclaved. Also useful as a drosophila stock bottle.

Graduated from 0 to 170 ml and from 0 to 6 oz.

Snap cap supplied separately (see B352-1).

Cat. #	Vol. (ml)	Size (mm)	Neck dia.	Qty/Cs
B352	170	55 x 55 x 102 H	34 mm	500

B352-1

Snap Cap for B352 Specimen Bottle

Made of polyethylene

Cat. #	Size Dia.	Qty/Cs
B352-1	46 mm	2000

B700

TRICORNTM Beakers

Made of polypropylene

Tricorn™ beakers provide three dripless pouring spouts. Tough, unbreakable and suitable for use with commonly used acids, alkalies and solvents. Autoclavable.

Cat. #	Vol. (ml)	Graduations (ml)	Size (mm)	Qty/Cs
B700-50	50	5	49 x 57 H	100
B700-100	100	10	58 x 72 H	100
B700-250	250	10	76 x 90 H	100
B700-400	400	20	85 x 108 H	100
B700-800	800	50	107 x 133 H	100
B700-1L	1000	50	115 x 145 H	100

A sturdy translucent reusable beaker that can be autoclaved, yet inexpensive enough to be disposable.

Dripless pouring spout offers more security.

If they fall, they will not break like glass beakers do.

F490 Disposable Funnels

Made of either polystyrene or polypropylene

Both sizes are tapered at a 60° angle with inside fluting.

Cat. #	Material	Top I.D. (mm)	Height (mm)	Stem Length (mm)	Stem Opening (mm)	For use with Paper dia.	Qty/Cs
F490-1	Polystyrene	57	69	27	5.3	11 cm	100
F490-2	Polystyrene	64	76	27	5.0	12.5 cm	100
F490-3	Polypropylene	56	69	27	5.1	11 cm	100
F490-4	Polypropylene	63	75	27	5.0	12.5 cm	100

B720-13 & 16

SeraNest™ Sample Cups

Made of polystyrene

These sample cups will hold perfectly on top of blood collection tubes. Just pour the blood sample into a SeraNest™ and its low shoulder will hold securely on the tube. No need to relabel. Two sizes available.

B720-8

Analyzer Cups for Hitachi Systems

Made of polystyrene

B720-40 Fibrin Cups

Made of polyethylene

Precision molded for constant volume and uniform heat transfer.

Cat. #	Dia.	Volume	Qty/Bag	Qty/Cs
B720-8	12.7 mm	2 ml	1000	10,000
B720-13	13.9 mm	1 ml	1000	5000
B720-16	16.7 mm	2 ml	1000	5000
B720-40	11.5 mm	1.3 ml	1000	10,000

B721-1 Roche Cobas Sample Tube 2.5 ml

Made of polystyrene

This tube is used with the Roche Cobas Analyzer. It has perfect clarity for easy viewing of contents. This graduated false bottom tube has a capacity of 2.5 ml and will accept bar code labels.

For caps, see series T404-3 on page 131.

Gat. #	volume	Qty/PK	uty/US
B721-1	2.5 ml	1000	2000

C200G

SputEmTM Sputum Collection System

Made of polypropylene

The ideal way to collect, carry and process biological samples. The unit features a base which already incorporates a removable sterile 50 ml graduated polypropylene conical tube that can withstand centrifugation up to 5000 RPM, or 3000g.

Available in a light green color, three narrow vertical windows allow the contents of the tube to be discreetly seen. A wide base ensures great stability and prevents tipping of the unit. The large collection funnel is made in such a way that specimens fall directly into the graduated centrifuge tube and do not contaminate the outside threads. The centrifuge tube screw cap is being kept sterile at all times under the snap cap on top of the funnel.

A patient label is already affixed on top of the unit and can easily be transferred to the tube before leaving for the laboratory. The base can be used as a support during transit. Each unit is sterile and individually wrapped.

Cat. #

C200G

Qty/Cs

BEFORE COLLECTION

- · Remove from package.
- · Fill in patient label.
- Lift the hinged lid.
- · Avoid touching inside of funnel.
- · Close lid after each use.

 Remove snap cap to · Remove funnel top expose sputum tube and invert over tube threaded cap.

Sputum Collection

into threaded cap. Discard funnel top.

System and screw tube

Color

Green

 Remove patient label · Place patient label on

side of tube

 Place tube back in its base and send to lab.

C300

BIODISPOSERTM

Portable Disposal Containers

Made of polypropylene

This polypropylene container and cover can be flash autoclaved without melting. Available in two colors: red and yellow. Dimensions: 8.89 cm x 8.89 cm x 15.24 cm H (3 x 3 x 6 in. H) Volume: 1 L.

Cat. #	Color	Qty/Cs
C300-1R	Red	50
C300-1Y	Yellow	50

C570-12

Non Sterile Disposable Specimen Container

Polypropylene Container - Polyethylene Screw Cap

Graduated. Heavy-duty thick wall construction of both container and lid ensures a positive leakproof seal time after time. The drip ring on the container reduces the chances of contamination.

Wide base design for stable reliable use. Molded-in graduations up to 128 ml / 4 oz. Supplied non sterile and packaged in bags of 100 stacked by 10's. Yellow caps packed separately in bags of 100.

Cat. #	Packaging	Qty/Cs
C570-12	Bag / 100	500

C590

FlexTainerTM Containers

Made of polyethylene

This is a great space-saving expandable accordion-type jug which flattens down for easy transport. Great for carrying and storing numerous types of fluids, it is suitable for any laboratory. The FlexTainer™ folds away for easy storage. Made of high strength polyethylene, it features a comfortable carry grip and screw-on cap with on/off spout. It is available in many sizes up to 8 liters. Each bottle is individually wrapped.

Spigot can be adjusted for more accurate handling of flow rate.

Spigot is easy to open and close with one finger.

Cat. #	Volume	Qty/Pk	Qty/Cs
C590-3L	3 Liters	12	48
C590-5L	5 Liters	12	48
C590-8L	8 Liters	12	36

The SpecTainer™ and SecureTainer™ Family

If you TRULY care about your sample, let us help you PROTECT its integrity!

The SpecTainer™ and SecureTainer™ Family offers one of the most innovative and effective specimen containers on the market today. If you have ever purchased Urine and Specimen Containers in the past, you know that the packaging leaves much to be desired. The content that goes in, especially liquid samples, is very prone to leakage around the lid. This can lead to spills and messes in your trays, lab counters and all transportation systems used. A better screw cap had to be designed.

Simport® has discovered a solution to this problem and we are proud to announce the arrival of our SpecTainer™ and SecureTainer™ series. We offer you the most diverse choice of secure and reliable containers from 20 to 120 ml, including a unique ECO-friendly model biodegrading within 7 years instead of 4 centuries. Urine containers are also available in a sterile and non sterile version. And let's not forget our two unique versions of tamper evident designs ensuring your peace of mind during transport and storage.

INTRODUCING THE ECO-FRIENDLY SPECTAINER™, THE NEXT GENERATION OF URINE COLLECTION CONTAINERS

C566 & C567

Eco-Friendly SpecTainerUrine Container

Container made of polypropylene / Closure made of polyethylene

The Simport® Eco-Friendly SpecTainer™, one of the most innovative specimen containers on the market today, is now available in a new version: The Eco-Friendly SpecTainer™, a rapidly degradable Specimen Container. Plastics take hundreds of years to degrade naturally in the environment. The only condition that is necessary for the Eco-Friendly SpecTainer™ to biodegrade is constant contact with other degrading material. No heat, physical stress, oxygen or sunlight necessary. The Eco-Friendly SpecTainer™ has the ability to break down safely and quickly, by biological means, into the raw materials of nature and disappear into the environment.

The Simport® EcoTainer 24^{TM} will biodegrade to become some of the soil's organic components in less than 7 years in constant contact with the soil instead of up to 400 years when using conventional plastics.

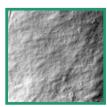

- Does not contain heavy metals
- No negative effect to its physical properties
- No heat, light or mechanical stress needed for product breakdown
- No toxic residue
- Fully degradable within 7 years, aerobically or anaerobically

Image of high-density surface after 12 months soil burial

Non biodegradable surface

Surface of the Eco-Friendly SpecTainer™

Label has space for patient identification

Cat. #	Vol. (ml)	Type	Cap Color	Closure	Qty/Pk	Qty/Cs
C566-60D0EC0	60	Non Sterile	Gold	Tamper Evident	100	500
C566-90D0EC0	90	Non Sterile	Gold	Tamper Evident	100	400
C566-120D0EC0	120	Non Sterile	Gold	Tamper Evident	100	300
C566-60AQSEC0	60	Sterile	Aqua	Tamper Evident	100	500
C566-90AQSEC0	90	Sterile	Aqua	Tamper Evident	100	400
C566-120AQSEC0	120	Sterile	Aqua	Tamper Evident	100	300
Cat. #	Vol. (ml)	Туре	Cap Color	Closure	Qty/Pk	Qty/Cs
Cat. # C567-60D0EC0	Vol. (ml) 60	Type Non Sterile	Cap Color Gold	Closure Conventional	Qty/Pk 100	Qty/Cs 500
		- 71	<u> </u>			
C567-60D0EC0	60	Non Sterile	Gold	Conventional	100	500
C567-60D0EC0 C567-90D0EC0	60 90	Non Sterile Non Sterile	Gold Gold	Conventional Conventional	100 100	500 400
C567-60D0EC0 C567-90D0EC0 C567-120D0EC0	60 90 120	Non Sterile Non Sterile Non Sterile	Gold Gold Gold	Conventional Conventional Conventional	100 100 100	500 400 300

C566

The TAMPER EVIDENT SpecTainerTM I Urine Container

Container made of polypropylene / Closure made of polyethylene

For applications needing the utmost security where sample integrity is of high importance. A great feature of the SpectainerTM I is that it incorporates a unique tamper evident screw cap ensuring peace of mind during transport or storage situations where someone might have tampered with the specimen. For color coding purposes, place a CapinsertTM on top of closure (see Series T345). Ten different colors are available.

Both containers and caps are manufactured without the use of plasticisers or mold release agents. All material used is free from latex. Containers are 95kpa compliant. Available in three sizes: 60, 90 and 120 ml. The 60 ml size however is not graduated. The sterile container protects its sterility with a tamper evident seal.

Anatomy of the SpecTainer™ I

- Insertion of a Capinsert[™] allows color coded identification of contents
- 2. Molded ridges around lid make it easy to open and close
- 3. Tamper evident sealing ring for better sample protection
- 4. Specially designed notches to ensure a perfect tamper evident seal
- Warning label has space for patient identification
- 6. Ridges around base offer a better grip during opening and closing

Screw cap on until a clicking noise is heard. This is when the plastic ring is firmly seated and locked over the container threads. When removing the tamper evident screw cap for the first time, the perforation is severed, thereby ensuring easy recognition that the container has been opened.

For IVD use C

Cat. #	Vol. (ml)	Туре	Cap Color	Closure	Qty/Pk	Qty/Cs
C566-60Y	60	Non Sterile	Yellow	Tamper Evident	100	500
C566-90Y	90	Non Sterile	Yellow	Tamper Evident	100	400
C566-120Y	120	Non Sterile	Yellow	Tamper Evident	100	300
C566-60CYS	60	Sterile	Cyan	Tamper Evident	100	500
C566-90CYS	90	Sterile	Cyan	Tamper Evident	100	400
C566-120CYS	120	Sterile	Cyan	Tamper Evident	100	300

C567

The SpecTainer™ II Urine Container

Container made of polypropylene / Closure made of polyethylene

This model uses a conventional leakproof screw cap. It is designed for collection, transport and storage of specimens, the polypropylene containers are safe to use even in adverse conditions. Containers are uniquely stackable, shatter resistant and are manufactured from virgin high-clarity polypropylene. They are designed with a straight side format. Available in three sizes: 60, 90 and 120 ml. The 60 ml size however is not graduated.

Anatomy of the SpecTainer™II

- Insertion of a Capinsert[™] allows color coded identification of contents
- 2. Molded ridges around lid make it easy to open and close
- 3. Leakproof screw cap with a unique integrated leak-resistant seal
- 4. Warning label has space for patient identification
- 5. Ridges around base offer a better grip during opening and closing

Containers are easily and safely stackable.

Tamper evident labels are placed on all sterile containers. Sterility is assured if unbroken.

available please refer to page 18.

For IVD use (

Cat. #	Vol. (ml)	Type	Cap Color	Closure	Qty/Pk	Qty/Cs
C567-60Y	60	Non Sterile	Yellow	Conventional	100	500
C567-90Y	90	Non Sterile	Yellow	Conventional	100	400
C567-120Y	120	Non Sterile	Yellow	Conventional	100	300
C567-60CYS	60	Sterile	Cyan	Conventional	100	500
C567-90CYS	90	Sterile	Cyan	Conventional	100	400
C567-120CYS	120	Sterile	Cvan	Conventional	100	300

C575

SecurTainer™ I TAMPER EVIDENT Specimen Containers

Container made of polypropylene Closure made of polyethylene

Especially designed for collection, transport and storage of specimens, Simport® offers shatter resistant polypropylene containers, eliminating most problems of leakage and evaporation. Containers are uniquely stackable, shatter resistant and are manufactured from virgin, polypropylene. The magenta lids are ribbed for easy opening when hands are wet or gloved while the jars are stackable for easy, safe storage and almost transparent to allow specimens to be viewed without opening. These straight sided containers are manufactured from virgin polypropylene with a unique integrated leak-resistant seal.

The uniqueness of the SecurTainerTMI is that it incorporates a unique tamper evident screw cap ensuring your peace of mind during transport or storage situations where someone might have manipulated the specimen without your prior knowledge. Can also be used without using the tamper evident locking mechanism.

Both containers and caps are manufactured without the use of plasticisers or mold release agents. Material used in manufacturing is free from latex. All containers are 95kpa compliant. Available in many sizes from 20 to 120 ml. Non sterile. Containers and caps packaged separately in bags of 100. Functional temperature range: -90 °C to +100 °C.

Cat. #	Volume	Qty/Pk	Qty/Cs
C575-20MA	20 ml	100	500
C575-40MA	40 ml	100	500
C575-60MA	60 ml	100	500
C575-90MA	90 ml	100	400
C575-120MA	120 ml	100	300

Place sample in container.

Push up tab on side of vial.

Screw on Tamper evident cap completely.

When opening the vial, the tamper evident ring will detach itself from the cap.

The SecureTainer™ I can also be used without the tamper evident feature.

C576

SecurTainer™ II TAMPER EVIDENT Specimen Containers

This model uses a different tamper evident concept when compared to the C575 Series. No locking tab is necessary when the tamper evident feature is used. Simply screw the cap on the container and the tamper evident sealing ring is automatically locked in place. When unscrewed, the ring is detached from the cap, showing clearly that the container was opened.

Also designed for collection, transport and storage of specimens, the polypropylene containers are safe to use even in adverse conditions. Containers are uniquely stackable, shatter resistant and are manufactured from virgin, polypropylene. These straight sided containers are available in many sizes from 20 to 120 ml. Non sterile. Containers and caps packaged separately in bags of 100.

Screw cap on until a clicking noise is heard. This is when the plastic ring is firmly seated and locked over the container threads. When removing the tamper evident screw cap for the first time, the perforation is severed, thereby ensuring easy recognition that the container has been opened.

		(For II	VD use
Cat. #	Volume	Qty/Pk	Qty/Cs
C576-20MA	20 ml	100	500
C576-40MA	40 ml	100	500
C576-60MA	60 ml	100	500
C576-90MA	90 ml	100	400
C576-120MA	120 ml	100	300

C575-120MATI

HydroTainer[™] **TAMPER EVIDENT** Water Sample Container

Container made of polypropylene / Closure made of polyethylene

This 120 ml sterile container is ideal for collecting water samples from a multitude of sources prior to laboratory testing. It contains one 10 mg sodium thiosulfate tablet for reducing and dehalogenating the sample.

The uniqueness of the HydroTainer™ is that it incorporates a tamper evident screw cap ensuring peace of mind during transport or storage situations where someone might have manipulated the specimen. Supplied with I.D. label and tamper evident seal.

Cat. #	Volume	Qty/Pk	Qty/Cs
C575-120MATI	120 ml	100	300

C577

SecurTainer™ III Specimen Containers

Container made of polypropylene / Closure made of polyethylene

Chemically resistant and shatterproof, The SecurTainer™ III Specimen Containers are supplied with a leakproof screw cap, particularly important when transporting hazardous material. Ideal for transport and storage of urine, sputum and most liquids or particulate samples.

Containers are uniquely stackable, shatter resistant and are manufactured from virgin, high-clarity polypropylene. Available in many sizes from 20 to 120 ml. Containers and caps packaged separately in bags of 100. Non sterile. Functional temperature range: -90 °C to +100 °C.

Anatomy of a SecurTainer™ III

- 1. Ridges around base offer a better grip during opening and closing.
- Insertion of a Capinsert[™] allows color coded identification of contents.
- 3. Molded ridges around lid make it easy to open and close.

Cat. #	Volume	Qty/Pk	Qty/Cs
C577-20W	20 ml	100	500
C577-40W	40 ml	100	500
C577-60W	60 ml	100	500
C577-90W	90 ml	100	400
C577-120W	120 ml	100	300

T345 Color Coding CAPINSERT™

Made of polypropylene

The CapinsertTM is used to color code a multitude of Simport[®] products according to your specific needs. It is inserted on top of the closure and has a write-on frosted area for sample identification.

Cat. #	Color	Cat. #	Color Qty/E		
T345B	Blue	T345P	Pink 50		
T345GY	Gray	T345R	Red 50		
T345G	Green	T345V	Violet	500	
T345L	Lilac	T345W	White	500	
T3450	Orange	T345Y	Yellow	500	
* Blue, lilac, red, yellow and white		T345AS	Assorted*	500	

C571 & C572 30 and 50 ml Sample Tubes

Tube made of polypropylene / Cap made of polyethylene

Conical bottom tubes with self-standing base graduated from 10 to 30 ml and 10 to 50 ml respectively in 5 ml increments. Chemically resistant and shatterproof, they are supplied with a leakproof screw cap, particularly important when transporting hazardous material. Ideal for transport and storage of urine, sputum and most liquids or particulate samples. Molded-in graduations make them easy to read. Available sterile or non sterile. The caps for Series C572 accept T345 Capinserts (see page 18 for details and colors). Functional temperature range: -90°C to +121°C.

30 ml tube dimensions: 25.3 mm dia x 111 mm length. 50 ml tube dimensions: 30 mm dia x 115 mm length.

C571-1	Sterile	50	Green	25	500
C571-2	Non sterile	50	Yellow	100	500
C572-1	Sterile	30	White	25	500
C572-2	Non sterile	30	White	100	500

C580

Specimen Containers with Snap Cap

Cap and closure are made of polypropylene

These disposable containers made of polypropylene, are ideal for collection and storage of fluids, powders, solids, pathology specimens and hazardous samples. Lids are tight fitting.

C572

Cat. #	(ml/oz)	Opening (mm)	Height (mm)	Qty/Cs
C580-3	300/10	111	45	100
C580-4	500/17	111	75	100
C580-5	1000/34	111	140	100

C581

Tamper Evident Specimen Containers

Cap and closure are made of polypropylene

These disposable containers are ideal for collection, transport and storage of fluids, powders, solids, pathology specimens and hazardous samples. Tight-fitting lids prevent leaks and odors. They incorporate a tamperproof lid which is opened by first removing tab on side of lid, then by lifting the cover. They resist temperatures up to 121 °C. The two larger sizes are supplied with a plastic handle for easy carrying.

Cat. #	(ml/oz)	Opening (mm)	Height (mm)	Qty/Cs
C581-300	300/10	111	45	100
C581-500	500/17	111	75	100
C581-1L	1000/34	111	140	100
C581-2600	2600/87	200	124	25
C581-5700	5700/140	225	195	10

PETRI DISHES

D210

Sterile Petri Dishes

Made of polystyrene

Simport® Petri dishes are available in a variety of shapes and sizes for use in routine procedures and with automated equipment. Economical, optically clear dishes are precision-molded from biomedical grade polystyrene so cultures are clearly visible without distortion. Dishes are packaged in heavy-wall polyethylene sleeves. **Not for tissue culture application.**

Cat.#	Model (mm)	Actual Dim. (mm)	Vol. (ml)	Qty/Sleeve	Qty/Cs
D210-7	100 x 20	90 x 20	100	20	500
D210-7WL	100 x 20	90 x 20	100	20	500
D210-8	100 x 25	90 x 25	125	20	500
D210-8R	100 x 25	90 x 25	125	20	500
D210-13	60 x 15	55 x 13	28	20	500
D210-14	50 x 9	50 x 9	12	20	500
D210-15	35 x 10	35 x 10	9	20	500

D210-7 Commonly refered to as a 100 mm x 20 mm dish

For unimpaired observation of specimen growth with raised straight ridge around top for stable stacking

D210-7WL Commonly refered to as a 100 mm x 20 mm dish

This dish has three venting ribs into the underside of the lid to prevent condensation build-up

D210-8 Commonly refered to as a 100 mm x 25 mm dish

Accommodates déeper fills for longer culture periods. Used for fungal cultures, plant propagation. This dish has three venting ribs into the underside of the lid to prevent condensation build-up.

D210-8R Commonly refered to as a 100 mm x 25 mm dish

Similar to D210-8 but with non-vented lid having a raised straight ridge around top for stable stacking

D210-13 Commonly refered to as a 60 mm x 15 mm dish

For use whenever a small quantity of culture is desirable. For unimpaired observation of specimen growth with raised straight ridge around top for stable stacking. This dish has three venting ribs on the edge of the dish to prevent condensation build-up.

D210-14 Commonly refered to as a 50 mm x 9 mm dish

Box type dish, for classroom studies, water studies, culturing of mycobacteria, aerosol testing, membrane filter and immunodiffusion techniques. Tight lid prevents sample dehydration.

D210-15 Commonly refered to as a 35 mm x 10 mm dish

Selected for small quantities of culture media. For unimpaired observation of specimen growth with raised straight ridge around top for stable stacking. This dish has three venting ribs into the underside of the lid to prevent condensation build-up.

D210-16 Square Petri Dish with Grid

Made of polystyrene

Commonly refered to as a 100 mm x 15 mm dish

Free from optical distortion and sterile. These dishes are ideal for phage typing, susceptibility testing, plate counts, and probe assays. Each 13 mm grid is marked numerically in one direction and alphabetically in the other. This dish has four venting ribs into the underside of the lid to prevent condensation build-up.

Cat. #	Model (mm)	Actual Dim. (mm)	Vol. (ml)	Qty/Sleeve	Qty/Cs
D210-16	100 x 15	90 x 15	110	10	500

D210-17 Contact Plate

Made of polystyrene

These dishes are free from optical distortion and are sterile. The grid is $10 \times 10 \text{ mm}$ with numbered and lettered squares to facilitate counting and to locate colonies. The D210-17D model is designed with a convex bottom in order to save on culture medium.

Cat. #	Actual Dim. (mm)	Vol. (ml)	Qty/Sleeve	Qty/Cs
D210-17	60 x 15	20	20	500
D210-17D	60 x 15	15	20	500

D210-18 Absorbent Pad Petri Dishes

Made of polystyrene

These 50 x 9 mm sterile petri dishes with absorbent pads are ideal for culturing micro-organisms on either agar or broth based media. Designed to accommodate 47 mm diameter membrane filters. These dishes are stackable and have squared off edges on both the top and bottom which provide convenient grips for one handed opening. The snug fitting top ensures that neither the absorbent pad nor the agar media will dry out during incubation. A frosted area on top of lid permits labeling.

Cat. #	Actual Dim. (mm)	Style	Qty/Sleeve	Qty/Cs
D210-18A	50 x 9	Without Pads	20	500
D210-18B	50 x 9	With Pads	20	500

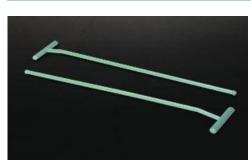
L200

INO-LOOP™ Inoculating Loops and Needles

Made of high impact polystyrene

Loops and needles are smooth and flexible to facilitate uniform streaking without damaging the gel surface. Needles are straight and suitable for removal of specimens of single colonies. Packed sterile in safe, tamperproof, zip-lock resealable bags.

Disposable inoculating loops and needles do not require flaming and thus eliminate the risk of infection due to aerosol formation of pathogenic substances.


Cross contamination due to improper sterilization is eliminated. They can be used under hoods without danger, and are color-coded for ease of size identification. Certificate of conformity available upon request. Total length: 227 mm

Smooth loop surface provides uniform and gentle streaking.

Cat. #	1	Description	Color	Qty/Pk	Qty/Cs
L200-1		Loop 1µl	Blue	25	1000
L200-1A		Loop 1µl	Blue	10	1000
L200-11		Loop 1µl	Blue	1	250
L200-2		Loop 10µl	Yellow	25	1000
L200-2A		Loop 10µl	Yellow	10	1000
L200-21		Loop 10µl	Yellow	1	250
L200-3		Needle	White	25	1000
L200-3A		Needle	White	10	1000
L200-31		Needle	White	1	250

L300

Bacterial Cell Spreader

Made of high impact polystyrene

No flame sterilization needed. Designed for easy spreading of cells onto the surface of an agar plate. Supplied sterile in individual packs. Total length of handle: 176 mm. Width of spreader: 36 mm

Cat. #	Sterile	Color	Qty/Pk	Qty/Cs
L300	Yes	Green		100

Г417

Culture Tubes 13 x 100 mm with Screw Cap

Tube made of polystyrene / Cap made of polyethylene

These 8 ml screw cap tubes are available either sterile or non sterile. A special tamper evident cap is offered for applications needing the utmost security where sample integrity is of high importance. Tubes are made of optically clear polystyrene and can be centrifuged up to $3000 \times g$. These are not treated for cell culture. The sterile ones are sterilized by gamma radiation and are non pyrogenic.

Cat. #	Sterile	Tamper Evident	Qty/Bag	Qty/Cs
T417-4	No	No	Bulk	1000
T417-4S	Yes	No	125	1000
T417-4TP	No	Yes	Bulk	1000

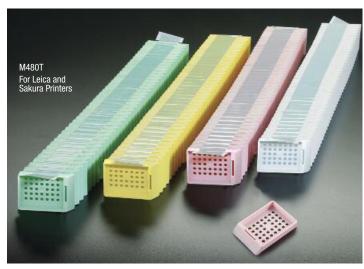
M480

Embedding Cassettes

Made of acetal

Disposable plastic tissue cassettes are suitable for holding and identifying tissue samples in processing, embedding, and sectioning procedures. The cassettes fit securely in microtome chuck adapters. Cassette is totally resistant to the chemical action of histological solvents. These cassettes are designed to accept standard metal lids (cat.# M481) and will keep specimens in complete safety during processing. The slanted writing surface accepts markings easily, permitting sample identification throughout all stages of embedding and long afterwards when in archives. They are available in 11 colors. Each case contains 3 dispenser boxes of 500 cassettes.

Cat. #	Color	Qty/Cs	Cat. #	Color	Qty/Cs
M480-2	White	1500	M480-8	Tan	1500
M480-3	Pink	1500	M480-9	Gray	1500
M480-4	Green	1500	M480-10	Lilac	1500
M480-5	Yellow	1500	M480-11	Orange	1500
M480-6	Blue	1500	M480-12	Aqua	1500
M480-7	Peach	1500			
Cat. #		Des	scription		Qty/pk
M481		Metal P	rocess Cover		25



M481
Metal Lid for M480 Cassette

M480SL & M480T

Cassettes in QuickLoad™ Sleeves and Stacks

Made of acetal

The sleeved cassettes are especially made to be used with ThermoFisher printers. Cassettes with tape are to be used with Leica and Sakura Ink Jet printers. Molded from a special high density acetal polymer, they keep specimens safely submerged and are totally resistant to the chemical action of most solvents used in histology laboratories. The efficient flow-through slots maximize fluid exchange and ensure proper reagent drainage.

In Sleeves Cat. #	Qty/Cs	In Stacks Cat. #	Qty/Cs	Color
M480-2SL	750	M480-2T	2000	White
M480-3SL	750	M480-3T	2000	Pink
M480-4SL	750	M480-4T	2000	Green
M480-5SL	750	M480-5T	2000	Yellow
M480-6SL	750	M480-6T	2000	Blue
M480-7SL	750	M480-7T	2000	Peach
M480-8SL	750	M480-8T	2000	Tan
M480-9SL	750	M480-9T	2000	Gray
M480-10SL	750	M480-10T	2000	Lilac
M480-11SL	750	M480-11T	2000	Orange
M480-12SL	750	M480-12T	2000	Aqua

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

Compatible with all cassette printers

M490

HISTOSETTE® I

Tissue Processing / Embedding Cassettes

Made of acetal

Disposable plastic cassettes hold tissue specimens during the embedding process, as well as in a storage file. Molded from a special high density polymer, these cassettes keep specimens safely submerged in liquid and are totally resistant to the chemical action of histological solvents. The efficient flow-through slots maximize fluid exchange and ensure proper drainage. The one-piece integral lid eliminates the need for separate steel lids. Just snap apart and conveniently lock the lid into the base of the cassette. They can be opened or closed as often as necessary and they always relock securely without danger of specimen loss. Anterior writing area at a 30° angle. Not suitable for automated printers.

Each case contains 3 dispenser boxes of 500 cassettes.

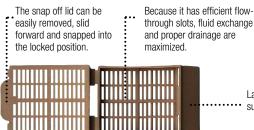
M491

HISTOSETTE® I

Biopsy Processing / Embedding Cassettes

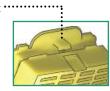
Made of acetal

Disposable plastic cassettes similar to Series M490 but specially designed to hold biopsy specimens during the embedding process, as well as in a storage file. Anterior writing area at a 30° angle. Not suitable for automated printers.


Each case contains 3 dispenser boxes of 500 cassettes.

For IVD use	For	IVD	use	(ϵ
-------------	-----	-----	-----	---	------------

Tissue	Biopsy		
Cat. #	Cat. #	Color	Qty/Cs
M490-2	M491-2	White	1500
M490-3	M491-3	Pink	1500
M490-4	M491-4	Green	1500
M490-5	M491-5	Yellow	1500
M490-6	M491-6	Blue	1500
M490-7	M491-7	Peach	1500
M490-8	M491-8	Tan	1500
M490-9	M491-9	Gray	1500
M490-10	M491-10	Lilac	1500
M490-11	M491-11	Orange	1500
M490-12	M491-12	Aqua	1500
E. B E	1 =1 1/11		


Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

Anatomy of a Histosette® I

through slots, fluid exchange

Larger unobstructed writing surface sloped at 30° angle. Because it has a back mounted locking device, it *** will never open during processing.

Made of acetal

These cassettes are identical to Series M490 but the anterior writing area has a 45° instead of a 30° angle. The more acute angle makes these cassettes more suitable to be used with some models of cassette labeling instruments.

These disposable plastic cassettes hold tissue specimens very efficiently during the embedding process, as well as in a storage file. Molded from a special high density polymer, these cassettes keep specimens safely submerged in liquid and are totally resistant to the chemical action of histological solvents. **The efficient flow-through slots maximize fluid exchange and ensure proper drainage**. The one-piece integral lid eliminates the need for separate steel lids. Just snap apart and conveniently lock the lid into the base of the cassette. They can be opened or closed as often as necessary and they always relock securely without danger of specimen loss. Each case contains 3 dispenser boxes of 500 cassettes.

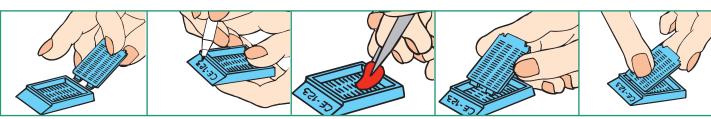
M499

HISTOSETTE® I

Biopsy Processing / Embedding Cassettes

Made of acetal

This model of cassette is similar to Series M498 and is specially designed to hold biopsy specimens during the embedding process.


Each case contains 3 dispenser boxes of 500 cassettes.

Tissue Cat. #	Biopsy Cat. #	Color	Qty/Cs
M498-2	M499-2	White	1500
M498-3	M499-3	Pink	1500
M498-4	M499-4	Green	1500
M498-5	M499-5	Yellow	1500
M498-6	M499-6	Blue	1500
M498-7	M499-7	Peach	1500
M498-8	M499-8	Tan	1500
M498-9	M499-9	Gray	1500
M498-10	M499-10	Lilac	1500
M498-11	M499-11	Orange	1500
M498-12	M499-12	Aqua	1500

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

How to use a Histosette® I

Separate cover by folding it forward and backward.

Identify in front or sides.

Insert sample.

Slide cover in place and lock it.

After processing, remove cover by pulling on back tab.

Tissue	Biopsy		
Cat. #	Cat. #	Color	Qty/Cs
M492-2	M493-2	White	1500
M492-3	M493-3	Pink	1500
M492-4	M493-4	Green	1500
M492-5	M493-5	Yellow	1500
M492-6	M493-6	Blue	1500
M492-7	M493-7	Peach	1500
M492-8	M493-8	Tan	1500
M492-9	M493-9	Gray	1500
M492-10	M493-10	Lilac	1500
M492-11	M493-11	Orange	1500
M492-12	M493-12	Agua	1500

M492

HISTOSETTE® II

Tissue Processing / Embedding Cassettes

Made of acetal

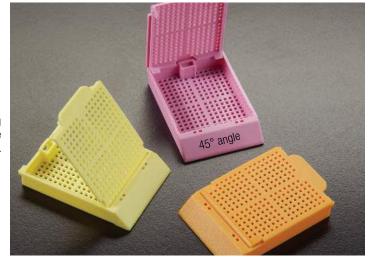
Disposable plastic cassettes hold tissue specimens during processing and embedding, as well as in storage. Molded from a special high-density polymer, these patented cassettes keep specimens safely submerged in liquid and are totally resistant to the chemical action of histological solvents. The efficient flow-through slots maximize fluid exchange and ensure proper drainage. The one-piece integral lid eliminates the need for separate steel lids. They can be opened and closed as often as necessary and will always relock securely without danger of specimen loss.

The anterior writing area is slanted at a 45° angle to make the cassette more suitable to be used with certain types of cassette labeling instruments. Available in 11 colors. Each case contains 3 dispenser boxes of 500 cassettes.

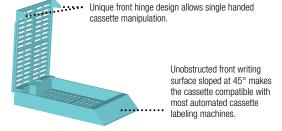
Compatible with most cassette printers

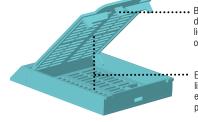
Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

M493


HISTOSETTE® II

Biopsy Processing / Embedding Cassettes


Made of acetal


Similar to M492 but specially designed to hold biopsy specimens during the embedding process, as well as in a storage cabinet. Anterior writing area is at a 45° angle to make the cassette more suitable to be used with certain types of cassette labeling instruments. Each case contains 3 dispenser boxes of 500 cassettes.

Anatomy of a Histosette® II

 Back mounted locking device securely holds the lid in place and will never open during processing.

Efficient flow-through slots in lid and base maximize fluid exchange, thereby ensuring proper drainage.

Patented

M485

HISTOSETTE® II

Tissue Processing / Embedding Cassettes

Made of acetal

Most convenient for cassette labeling instruments since covers are already removed from cassettes and are packaged separately in the case. Disposable plastic cassettes hold tissue specimens during processing and embedding, as well as in storage. Molded from a special high-density polymer, these patented cassettes keep specimens safely submerged in liquid and are totally resistant to the chemical action of histological solvents. The efficient flow-through slots maximize fluid exchange and ensure proper drainage.

The anterior writing area is slanted at a 45° angle to make the cassette more suitable to be used with certain types of cassette labeling instruments. Available in 11 colors. Each case contains 2 dispenser boxes of 500 cassettes and 1 dispenser box of 1000 covers.

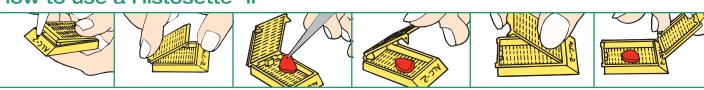
For IVD use C F

		(1011)	D doc
Tissue Cat. #	Biopsy Cat. #	Color	Qty/Cs
M485-2	M486-2	White	1000
M485-3	M486-3	Pink	1000
M485-4	M486-4	Green	1000
M485-5	M486-5	Yellow	1000
M485-6	M486-6	Blue	1000
M485-7	M486-7	Peach	1000
M485-8	M486-8	Tan	1000
M485-9	M486-9	Gray	1000
M485-10	M486-10	Lilac	1000
M485-11	M486-11	Orange	1000
M485-12	M486-12	Aqua	1000

Cassettes and lids packaged separately

Compatible with all cassette printers

M486 **HISTOSETTE® II** Biopsy Processing / Embedding Cassettes


Made of acetal

Most convenient for cassette labeling instruments but specially designed to hold biopsy specimens during the embedding process, as well as in a storage file. The covers are already removed from cassettes and are packaged seperately in the

Anterior writing area is at a 45° angle to make the cassette more suitable to be used with certain types of cassette labeling instruments. Each case contains 2 dispenser boxes of 500 cassettes and 1 dispenser box of 1000 covers.

For IVD use

How to use a Histosette® II

Identify sample on either the front lábeling area.

Press on back tab to open Insert sample.

Close cover and press front of lid to lock it in place.

To open, lift tab at the back of To remove the cover, pivot cassette with forefinger while the lid forward and it will

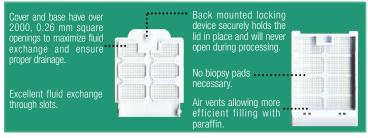
depressing the center of lid with disconnect automatically.

M502

MICROSETTETM I

Biopsy Processing / Embedding Cassettes

Made of acetal


Biopsy pads are no longer necessary with these innovative disposable plastic biopsy cassettes with a large compartment measuring 25 x 30 mm. Perfect even with needle biopsies since mesh holes have a diameter of only 0.26 mm while still allowing for maximum fluid exchange and drainage. Molded from a special high density polymer, these patented cassettes keep specimens safely submerged in liquid and are resistant to most histological solvents. They can be opened and closed as often as necessary and they always relock securely without danger of specimen loss. Available in 11 colors. Anterior writing area is at a 45° angle to make the cassette more suitable, to be used with certain types of cassette labeling instruments.

Each case contains four dispenser boxes of 250 cassettes with covers assembled.

Anatomy of a Microsette™ I

Biopsy Cassette with one compartment	Biopsy Cassette with six compartments			
Cat. #	Cat. #	Color	Qty/Pk	Qty/Cs
M502-2	M503-2	White	250	1000
M502-3	M503-3	Pink	250	1000
M502-4	M503-4	Green	250	1000
M502-5	M503-5	Yellow	250	1000
M502-6	M503-6	Blue	250	1000
M502-7	M503-7	Peach	250	1000
M502-8	M503-8	Tan	250	1000
M502-9	M503-9	Gray	250	1000
M502-10	M503-10	Lilac	250	1000
M502-11	M503-11	Orange	250	1000
M502-12	M503-12	Aqua	250	1000

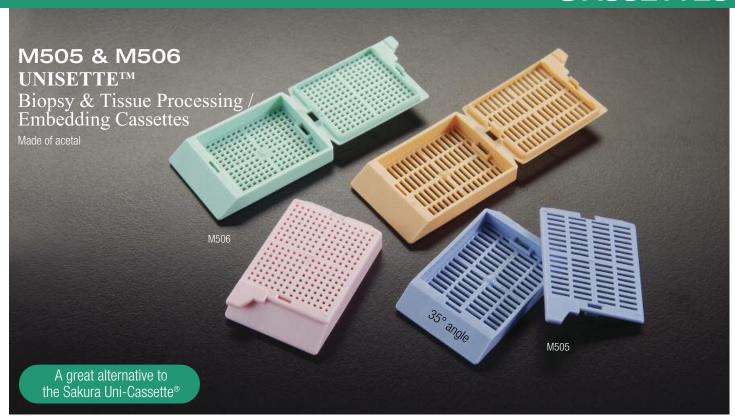
Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

M503

MICROSETTETM I

Biopsy Processing / Embedding Cassettes

Made of acetal


This model can hold up to six tissue specimens, each one placed in its own $7 \times 12 \text{ mm}$ (1/4 x 7/16 in.) compartment, numbered from 1 to 6.

No biopsy pads necessary. Cover and base have over 2000 square openings to maximize fluid exchange and ensure proper drainage. Approximately 170 holes (each having a diameter of 0.26 mm) per compartment.

Each case contains four dispenser boxes of 250 cassettes with covers assembled.

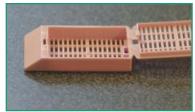
Molded from a special high density polymer, these cassettes keep specimens safely submerged in liquid and are resistant to the chemical action of most histological solvents. The efficient flow-through slots maximize fluid exchange and ensure proper drainage. The one-piece integral lid eliminates the need for separate steel lids. The snap-latch and hinge-lock design of the UNISETTETM prevent early separation of base and lid and allow for one-hand operation. Lids can be opened and closed as often as necessary and they always relock securely without danger of specimen loss. Anterior writing area is at a 35° angle.

M506 Series is similar to M505 but specially designed to hold biopsy specimens during the embedding process.

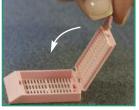
Available in 11 colors. Each case contains 3 dispenser boxes of 500 cassettes.

Tissue Cat. #	Biopsy Cat. #	Color	Qty/Cs
M505-2	M506-2	White	1500
M505-3	M506-3	Pink	1500
M505-4	M506-4	Green	1500
M505-5	M506-5	Yellow	1500
M505-6	M506-6	Blue	1500
M505-7	M506-7	Peach	1500
M505-8	M506-8	Tan	1500
M505-9	M506-9	Gray	1500
M505-10	M506-10	Lilac	1500
M505-11	M506-11	Orange	1500
M505-12	M506-12	Aqua	1500

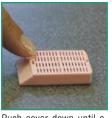
Have you ever considered The SLIMSETTE™? See M509 on page 31.

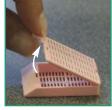


Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.



Compatible with Leica and Sakura cassette printers


How to use a UNISETTE™


The cover of the Unisette is attached to the back of the base in an open position.

To close, simply tilt cover forward, holding it by the front tab

Push cover down until a click is heard.

To open, tilt cover backward. It will remain attached to the base and can be closed again

Qty/Cs Cat. # Cat. # Color M507-2 M508-2 White M507-3 M508-3 M507-4 M508-4 1000 Green M507-5 M508-5 Yellow M507-6 M508-6 Blue M507-7 M508-7 Peach M507-8 M508-8 M507-9 M508-9 M507-10 M508-10 M507-11 M508-11 Orange M507-12 M508-12

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

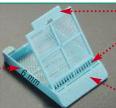
M507

MICROMESHTM

Biopsy Processing / Embedding Cassettes

Made of acetal

This version of the Micromesh™ offers 1676 square openings (0.38 mm) allowing for a greatly improved fluid exchange and drainage without having to use biopsy pads. Large anterior slots in both cassette and cover ensure that the Micromesh™ biopsy cassette will sink rapidly. A large square compartment measuring 27 mm is perfect even for needle biopsies. The cover does not protrude above the cassette, a great space saving feature allowing more cassettes to be stacked in automatic labeling machines and tissue processors.


Molded from a special high density polymer, these patented cassettes keep specimens safely submerged in liquid and are totally resistant to the chemical action of histological solvents. They can be opened and closed as often as necessary and they always relock securely without danger of specimen loss. Anterior writing area is at a 45° angle to make the cassette more suitable to be used with automated cassette printers. Available in 11 colors.

Each case contains four dispenser boxes of 250 cassettes with covers assembled.

Anatomy of Micromesh™ Cassettes

A recessed cover is a great space saving feature, allowing more cassettes to be stacked in automatic labeling machines and storage drawers

- ······ Cover pre-installed on cassette
 - Large anterior and posterior slots in both cassette and cover ensure that the Micromesh™ biopsy cassette will be submerged rapidly

NO BIOPSY PADS REQUIRED

Anterior writing area is at a 45° angle

M508

MICROMESHTM

Biopsy Processing / Embedding Cassettes

Made of acetal

This model is similar to Series M507 but cassettes have four square compartments each measuring 13 mm. Cover and base have about 1676 square openings maximizing fluid exchange and ensuring proper drainage.

Each case contains four dispenser boxes of 250 cassettes with covers assembled.

M509

$SLIMSETTE^{TM}$

Tissue Processing / Embedding Cassettes

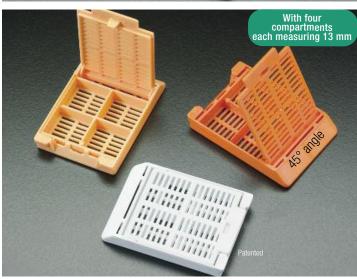
Made of acetal

The SLIMSETTE™, a new generation emerging in the Simport® Histology Family. More compact, easier to use and more efficient than ever. Similar to the design of the M507 model, it incorporates a unique recessed cover, a great space saving feature allowing more cassettes to be stacked in automatic labeling machines and in storage cabinets.

Molded from a special high density polymer, these cassettes keep specimens safely submerged in liquid and are resistant to the chemical action of histological solvents. The SLIMSETTE™ ensures efficient fluid exchange and drainage thanks to 114 openings each measuring 1 x 5 mm. They can be opened and closed as often as necessary and they always relock securely without danger of specimen loss. Large labeling areas for easy identification. The anterior writing area is slanted at a 45° angle. Available in 11 colors.

Each case contains 3 dispenser boxes of 500 cassettes with covers assembled. Dimensions: 41 x 28.5 x 6 mm H $(1^5/8 \text{ x } 1^1/8 \text{ x } 1^1/4 \text{ in. H})$

Compatible with all cassette printers



M510

SLIMSETTETM

Biopsy Processing / Embedding Cassettes

Made of acetal

Similar to M509 but specially designed to hold biopsy specimens during the embedding process, as well as in a storage cabinet. Anterior writing area is at a 45° angle to make the cassette more suitable to be used with certain types of cassette labeling instruments. This biopsy model ensures efficient fluid exchange and drainage thanks to 392 openings

			(101 110	
Tissue Cassette with one compartment Cat. #	Biopsy Cassette with one compartment Cat. #	Tissue Cassette with four compartments Cat. #	Color	Oty/Co
Gal. #	Gal. #	Gal. #	COIOI	Qty/Cs
M509-2	M510-2	M511-2	White	1500
M509-3	M510-3	M511-3	Pink	1500
M509-4	M510-4	M511-4	Green	1500
M509-5	M510-5	M511-5	Yellow	1500
M509-6	M510-6	M511-6	Blue	1500
M509-7	M510-7	M511-7	Peach	1500
M509-8	M510-8	M511-8	Tan	1500
M509-9	M510-9	M511-9	Gray	1500
M509-10	M510-10	M511-10	Lilac	1500
M509-11	M510-11	M511-11	Orange	1500
M509-12	M510-12	M511-12	Aqua	1500

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

M511 SLIMSETTETM

Tissue Processing / Embedding Cassettes

Made of acetal

This model is similar to Series M509 but cassettes have four square compartments each measuring 13 mm. Cover and base have openings maximizing fluid exchange and ensuring proper drainage. Each case contains 3 dispenser boxes of 500 cassettes with covers assembled.

M515

SWINGSETTETM

Tissue Processing / Embedding Cassettes

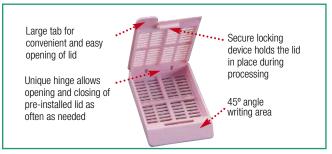
Made of acetal

These disposable plastic cassettes hold tissue specimens during processing and embedding, as well as in storage. Molded from a special high-density polymer, they keep specimens safely submerged in liquid and are resistant to the chemical action of histological solvents. The efficient flow-through slots maximize fluid exchange and ensure proper drainage.

This new model differs by the special hinge holding the base and cover together. This hinge allows cassettes to be opened and closed as often as necessary. The cover can be removed and re-inserted easily without danger of specimen loss.

Available in 11 colors.

Each case contains 3 dispenser boxes of 500 cassettes.



A great alternative to the Richard-Allan and Surgipath Cassettes

Tissue **Biopsy** Cat. # Cat. # Color Qty/Cs M515-2 M516-2 White M515-3 M516-3 M515-4 M516-4 M515-5 M516-5 Yellow M515-6 M516-6 Blue M515-7 M516-7 Peach M515-8 M516-8 Tan M515-9 Gray M516-9 M515-10 M516-10 M515-11 M516-11 Orange M515-12 M516-12

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

Anatomy of a Swingsette™

M516

SWINGSETTETM

Biopsy Processing / Embedding Cassettes

Made of acetal

These biopsy cassettes are similar to series M515 but especially designed to hold biopsy specimens during the processing / embedding process as well as in storage cabinets.

Each case contains three dispenser boxes of 500 cassettes.

M517

SWINGSETTETM

Tissue Processing / Embedding Cassettes

Made of acetal

Most convenient for cassette labeling instruments since the covers are packaged separately in the case. These disposable plastic cassettes hold tissue specimens during processing and embedding, as well as in storage. Molded from a special high-density polymer, they keep specimens safely submerged in liquid and are resistant to the chemical action of histological solvents. The efficient flow-through slots maximize fluid exchange and ensure proper drainage.

This model differs by the special hinge that holds the base and cover together. This hinge allows cassettes to be opened and closed as often as necessary. The cover can be removed and re-inserted easily without danger of specimen loss. Available in 11 colors.

Each case contains two dispenser boxes of 500 cassettes and one dispenser box of 1000 covers.

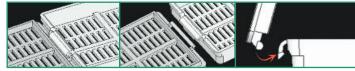
For IVD use (€

Tissue Cat. #	Biopsy Cat. #	Color	Qty/Cs
M517-2	M518-2	White	1000
M517-3	M518-3	Pink	1000
M517-4	M518-4	Green	1000
M517-5	M518-5	Yellow	1000
M517-6	M518-6	Blue	1000
M517-7	M518-7	Peach	1000
M517-8	M518-8	Tan	1000
M517-9	M518-9	Gray	1000
M517-10	M518-10	Lilac	1000
M517-11	M518-11	Orange	1000
M517-12	M518-12	Aqua	1000

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

Cassettes and lids packaged separately

M518 SWINGSETTE™ Biopsy Processing / Embedding Cassettes


Made of acetal

Most convenient for cassette labeling instruments since the covers are packaged separately in the case. These biopsy cassettes are similar to the M517 Series but are especially designed to hold biopsy specimens during the processing/embedding process as well as in storage cabinets.

Each case contains two dispenser boxes of 500 cassettes and one box of 1000 covers.

Close-up of the hinge

M515-M516 Series The cover is connected to the base.

M517-M518 Series The special hinge makes it easy to attach lid to base.

CASSETTES IN SLEEVES

M485SL & M486SL

HISTOSETTE® II

Cassettes in QuickLoad™ Sleeves

Made of acetal

Suitable for hoppers accepting plastic sleeves, these cassettes will load in cassette labeling instruments in one simple operation. Save time and money with these convenient sleeves of 75 unique Simport® cassettes. No more manual insertion, one cassette at a time. Just load the cassette sleeve in the hopper and you are ready for

These specially designed cassettes belong to the world-wide known Simport® HISTOSETTE® II Series. Molded from a special high density polymer, these cassettes keep specimens safely submerged in liquid and are resistant to the chemical action of histological solvents. The efficient flow-through slots maximize fluid exchange and ensure proper drainage.

Two types of cassettes are offered in order to suit your particular needs: a regular tissue cassette and a biopsy model designed to hold small biopsy samples securely during the embedding process. Anterior printing area is at a 45° angle, offering an unobstructed view of the writing surface and making the cassette perfectly suitable to be used with cassette labeling instruments.

The one-piece disposable plastic cover eliminates the need for reusable steel lids. It can be opened and closed as often as necessary and it always relocks without danger of specimen loss. Available in 11 colors.

Each case contains 10 sleeves and 750 covers.

M485SL and M486SL Series are available worldwide. For a US distributor, please contact one or our Customer Service reprensentatives.

M482 & M483 HISTOSETTE® II

Cassettes in E-Z Load™ Stacks

Contact us for more details. Made of acetal This stack of cassettes allows you to load the Shur/Mark® Cassette Labeling Instruments in one simple operation. Save time and money with these convenient stacks of 50 unique Simport® cassettes. No more manual insertion, one cassette at a time. Just load the stack in the hopper, cut and remove the holding tie and you are ready for

These specially designed cassettes belong to the world-wide known Simport® Histosette® II design. Molded from a special high density polymer, these cassettes keep specimens safely submerged in liquid and are totally resistant to the chemical action of histological solvents. The efficient flow-through slots maximize fluid exchange and ensure proper drainage.

Two types of cassettes are offered in order to suit your particular needs: a regular tissue cassette and a biopsy model designed to hold small biopsy samples securely during the embedding process. Anterior printing area is at a 45° angle.

TISSUE CASSETTES (In stacks of 50) Base Cat. # Cover Cat. # Color Qtv/Cs				
M482-2BA	M482-2LI	White	2000	
M482-3BA	M482-3LI	Pink	2000	
M482-4BA	M482-4LI	Green	2000	
M482-5BA	M482-5LI	Yellow	2000	
M482-6BA	M482-6LI	Blue	2000	
M482-7BA	M482-7LI	Peach	2000	
M482-8BA	M482-8LI	Tan	2000	
M482-9BA	M482-9LI	Gray	2000	
M482-10BA	M482-10LI	Lilac	2000	
M482-11BA	M482-11LI	Orange	2000	
M482-12BA	M482-12LI	Aqua	2000	

BIOPSY CASSETTES (In stacks of 50)				
Base Cat. #	Cover Cat. #	Color	Qty/Cs	
M483-2BA	M483-2LI	White	2000	
M483-3BA	M483-3LI	Pink	2000	
M483-4BA	M483-4LI	Green	2000	
M483-5BA	M483-5LI	Yellow	2000	
M483-6BA	M483-6LI	Blue	2000	
M483-7BA	M483-7LI	Peach	2000	
M483-8BA	M483-8LI	Tan	2000	
M483-9BA	M483-9LI	Gray	2000	
M483-10BA	M483-10LI	Lilac	2000	
M483-11BA	M483-11LI	Orange	2000	
M483-12BA	M483-12LI	Aqua	2000	

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

Tissue Cassette Cat. #	Biopsy Cassette Cat. #	Color	Qty/Cs
M485-2SL	M486-2SL	White	750
M485-3SL	M486-3SL	Pink	750
M485-4SL	M486-4SL	Green	750
M485-5SL	M486-5SL	Yellow	750
M485-6SL	M486-6SL	Blue	750
M485-7SL	M486-7SL	Peach	750
M485-8SL	M486-8SL	Tan	750
M485-9SL	M486-9SL	Gray	750
M485-10SL	M486-10SL	Lilac	750
M485-11SL	M486-11SL	Orange	750
M485-12SL	M486-12SL	Aqua	750

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply.

CASSETTES IN SLEEVES

Made of acetal

Suitable for hoppers accepting plastic sleeves, these cassettes will load in cassette labeling instruments in one simple operation. Just load the 75-cassette QuickLoadTM sleeve in the hopper and you are ready for printing.

The Micromesh™ offers 0.38 mm square openings, and large anterior slots allowing for increased fluid exchange and faster sinking in liquids. No biopsy pads are necessary. These cassettes feature a recessed cover and a large square 27 mm compartment, perfect even for needle biopsies.

Molded from a special high density polymer, these cassettes keep specimens safely submerged in liquid and are resistant to the chemical action of histological solvents. The lid can be opened and closed as often as necessary and always relocks securely without danger of specimen loss. Anterior writing area is at a 45° angle to make the cassette more suitable to be used with automated cassette printers. Available in 11 colors. Each case contains 10 sleeves.

Cat. #	Color	Qty/Cs
M507-2SL	White	750
M507-3SL	Pink	750
M507-4SL	Green	750
M507-5SL	Yellow	750
M507-6SL	Blue	750
M507-7SL	Peach	750
M507-8SL	Tan	750
M507-9SL	Gray	750
M507-10SL	Lilac	750
M507-11SL	Orange	750
M507-12SL	Agua	750

NO BIOPSY PADS REQUIRED

Lids are pre-mounted on cassettes

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

For IVD use

Anatomy of a Micromesh™

CASSETTES IN SLEEVES

M509SL SLIMSETTETM

Tissue Cassettes in **QuickLoad™** Sleeves

Made of acetal

The transparent sleeve allows viewing of cassettes in order to confirm there is no jam in the sleeve during the printing process.

This model is similar to the M507 cassette but is intended for tissue processing/ embedding procedures. The efficient flow-through slots maximize fluid exchange and ensure proper drainage. Lids can be opened and closed as often as necessary and they always relock securely without danger of specimen loss. When ready for the embedding process, covers can conveniently be snapped off and discarded.

Anterior writing area at a 45° angle. Available in 11 colors. Each case contains 10 sleeves of 75 cassettes.

Lid already installed on cassette base

Tissue Cassette Cat. #	Biopsy Cassette Cat. #	Color	Qty/Cs
M509-2SL	M510-2SL	White	750
M509-3SL	M510-3SL	Pink	750
M509-4SL	M510-4SL	Green	750
M509-5SL	M510-5SL	Yellow	750
M509-6SL	M510-6SL	Blue	750
M509-7SL	M510-7SL	Peach	750
M509-8SL	M510-8SL	Tan	750
M509-9SL	M510-9SL	Gray	750
M509-10SL	M510-10SL	Lilac	750
M509-11SL	M510-11SL	Orange	750
M509-12SL	M510-12SL	Aqua	750

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

M510SL SLIMSETTE™ Biopsy Cassettes in QuickLoad™ Sleeves

Made of acetal

Suitable for hoppers accepting plastic sleeves, these biopsy cassettes will load in cassette labeling instruments in one simple operation. Just load the 75-cassette QuickLoad $^{\text{TM}}$ sleeve in the hopper and you are ready for printing.

Molded from a special high density polymer, these cassettes keep specimens safely submerged in liquid and are totally resistant to the chemical action of histological solvents. The lid can be opened and closed as often as necessary and always relocks securely without danger of specimen loss. Anterior writing area is at a 45° angle to make the cassette more suitable to be used with automated cassette printers. Available in 11 colors.

Cassettes are packaged in sleeves of 75. Each case contains 10 sleeves.

CASSETTES IN SLEEVES

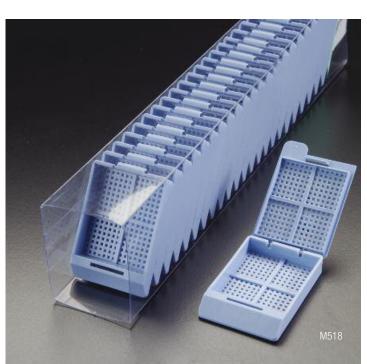
M517SL

SWINGSETTETM

Tissue Cassettes in **QuickLoad™** Sleeves

Made of acetal

Suitable for hoppers accepting plastic sleeves, these tissue cassettes will load in cassette labeling instruments in one simple operation. Just load the 75-cassette QuickLoad $^{\text{TM}}$ sleeve in the hopper and you are ready for printing.


Molded from a special high density polymer, these cassettes keep specimens safely submerged in liquid and are resistant to the chemical action of histological solvents. The lid can be opened and closed as often as necessary and always relocks securely without danger of specimen loss. Anterior writing area is at a 45° angle to make the cassette more suitable to be used with automated cassette printers. Available in 11 colors.

Each case contains 10 sleeves of 75 cassettes and 10 bags of 75 lids.

Tissue Cassette Cat. #	Biopsy Cassette Cat. #	Color	Qty/Cs
M517-2SL	M518-2SL	White	750
M517-3SL	M518-3SL	Pink	750
M517-4SL	M518-4SL	Green	750
M517-5SL	M518-5SL	Yellow	750
M517-6SL	M518-6SL	Blue	750
M517-7SL	M518-7SL	Peach	750
M517-8SL	M518-8SL	Tan	750
M517-9SL	M518-9SL	Gray	750
M517-10SL	M518-10SL	Lilac	750
M517-11SL	M518-11SL	Orange	750
M517-12SL	M518-12SL	Aqua	750

Fluo Pink, Fluo Green and Fluo Yellow are also available. Minimum quantities apply. Contact us for more details.

Have you ever considered Our Paraffin Block Mailer? See M477-6 on page 44.

Compatible with ThermoFisher cassette printers

M518SL SWINGSETTE™ Biopsy Cassettes in QuickLoad™ Sleeves

Made of acetal

These disposable plastic cassettes hold biopsy specimens during processing and embedding, as well as in storage. Molded from a special high-density polymer, they keep specimens safely submerged in liquid and are totally resistant to the chemical action of histological solvents. The efficient flow-through slots maximize fluid exchange and ensure proper drainage.

This new model differs by the special hinge holding the base and cover together. This hinge allows cassettes to be opened and closed as often as necessary. The cover can be removed and re-inserted easily without danger of specimen loss. Available in 11 colors.

Each case contains 10 sleeves of 75 cassettes and 10 bags of 75 lids.

Made of acetal

Molded from a special high density acetal, these tissue cassettes keep specimens safely submerged in liquid and are totally resistant to the chemical action of solvents used in histology laboratories. The efficient flow-through slots maximize fluid exchange and ensure proper drainage.

The one-piece snap-latch and hinge-lock design prevents early separation of base and lid and allows one-hand operation. Lids are attached in an open position for easy filling, but can be opened or closed as often as necessary and will always relock securely. The tab on the left front side makes opening easy. Lids are easily removed by pulling sideways. The anterior writing area is at a 35° angle. Cassettes are packaged in stacks of 40. Each case contains 25 stacks for a total of 1000 cassettes. Choose from 11 standard colors.

Cat. #	Color Qty/Cs	Cat. #	Color	Qty/Cs
M505-2T	White 1000	M505-8T	Tan	1000
M505-3T	Pink 1000	M505-9T	Gray	1000
M505-4T	Green 1000	M505-10T	Lilac	1000
M505-5T	Yellow 1000	M505-11T	Orange	1000
M505-6T	Blue 1000	M505-12T	Aqua	1000
M505-7T	Peach 1000			

Compatible with Leica and Sakura cassette labeling instruments

> Available worldwide. For North America, please contact a Customer Service Representative.

For IVD use (E

M506T UNISETTE™ Biopsy Cassettes in QuickLoad™ Stacks

Made of acetal

The UNISETTE™ Biopsy Cassettes, made of acetal, are specially designed to hold biopsy specimens. One millimeter openings maximize fluid exchange and ensure proper drainage. The anterior writing area is at a 35° angle. The lids are attached, but arrive open for easy filling. There is a tab for opening on the left front side of the cassette lid. Lids are easily removed and will always relock securely.

Cassettes are packaged in stacks of 40. Each case contains 25 stacks for a total of 1000 cassettes. Choose from 11 standard colors.

Cat. #	Color Qty/Cs	Cat. #	Color	Qty/Cs
M506-2T	White 1000	M506-8T	Tan	1000
M506-3T	Pink 1000	M506-9T	Gray	1000
M506-4T	Green 1000	M506-10T	Lilac	1000
M506-5T	Yellow 1000	M506-11T	Orange	1000
M506-6T	Blue 1000	M506-12T	Aqua	1000
M506-7T	Peach 1000			

The MICROMESHTM offers 1676 square openings (0.38 mm) allowing for a greatly improved fluid exchange without having to use biopsy pads. Large anterior and posterior slots in both cassette and cover ensure that the MICROMESHTM Biopsy Cassette will sink rapidly. A large square compartment with a side measuring 27mm is perfect even for needle biopsies. The cover does not protrude above the cassette, a great space saving feature.

Molded from a special high density polymer, these patented cassettes keep specimens safely submerged in liquid and are totally resistant to the chemical action of histological solvents. The MICROMESHTM mesh ensures efficient fluid exchange and drainage. The one-piece integral lid eliminates the need for separate steel lids. They can be opened and closed as often as necessary and they always relock securely without danger of specimen loss. Anterior writing area is at a 45° angle to make the cassette more suitable to be used with automated cassette printers. Choose from 11 standard colors. Cassettes are packaged in stacks of 40. Each case contains 50 stacks for a total of 2000 cassettes.

For IVD use

M517T & M518T **SWINGSETTE**TM

Tissue & Biopsy Cassettes in QuickLoad™ Stacks

Made of acetal

Our latest model suited for the Leica and Sakura labellers. These cassettes will also load in those cassette labeling instruments in one simple operation. Save time and money with these convenient stacks of 40 Simport® cassettes. Just load the cassette sleeve in the magazine and you are ready for printing.

These specially designed cassettes belong to the world-wide known Simport[®] Swingsette[™] design. They differ by the special hinge that holds the base and cover together. This hinge allows the Swingsette[™] to be opened and closed as often as necessary.

Two types of cassettes are offered in order to suit your particular needs: a regular tissue cassette and a biopsy model designed to hold small biopsy samples securely during the embedding process. Anterior printing area is at a 45° angle, offering an unobstructed view of the writing surface and making the cassette perfectly suitable to be used with cassette labeling instruments. Choose from 11 standard colors.

Compatible with Leica
and Sakura cassette
labeling instruments

	labelling ilistr	unients	
For Tissues	For Biopsies		
Cat. #	Cat. #	Color	Qty/Cs
M517-2T	M518-2T	White	2000
M517-3T	M518-3T	Pink	2000
M517-4T	M518-4T	Green	2000
M517-5T	M518-5T	Yellow	2000
M517-6T	M518-6T	Blue	2000
M517-7T	M518-7T	Peach	2000
M517-8T	M518-8T	Tan	2000
M517-9T	M518-9T	Gray	2000
M517-10T	M518-10T	Lilac	2000
M517-11T	M518-11T	Orange	2000
M517-12T	M518-12T	Aqua	2000

CASSETTES

M512

MACROSETTE®

Processing / Embedding Cassettes (with lid)

Made of acetal

Disposable plastic cassettes designed to hold larger tissue specimens during the embedding process, as well as in a storage cabinet. Dimensions are exactly the same as the ones of a regular HISTOSETTE® cassette but the MACROSETTE® is twice as high (13 mm).

The one-piece integral lid eliminates the need for separate steel lids. It can be opened and closed as often as necessary and will always relock securely without danger of specimen loss. Large labeling areas are located on three sides of the cassettes for your convenience. Each case contains three dispenser boxes of 250 cassettes.

Dimensions: 40.1 x 28.5 x 13 mm H (19/16 x 11/8 x 1/2 in. H)

M475-10

Disposable Deep Base Mold

Made of PVC

Cat. #

M512

Designed especially for M512 MACROSETTE®. Thanks to the specially formulated plastic material, it offers excellent thermal exchange. It has a smooth interior finish and rounded corners facilitating specimen removal.

Color

Qty/Cs

Cat. #	Size (mm)	Vol	Qty/Cs
M475-10	37 x 24 x 10	5 ml	500

M513-2

JUMBOSETTE®

Processing / Embedding Cassettes (with lid)

Made of acetal

The JUMBOSETTETM is suitable for extra large tissue samples such as eyes, animal organs etc, thanks to its larger size. Will ensure efficient fluid exchange during the processing cycle. When utilised with a specially designed Base Mold, the cassette becomes the supporting structure of the paraffin block. A clamp adapter is available in order to support the JUMBOSETTETM. Dimensions: $3" \times 2" \times 34" (75 \times 52 \times 18 \text{ mm})$.

Cat. #	Color	Qty/Cs
M513-2	White	100

Green, yellow and blue available on request. Minimum quantities apply.

M474-7

Reusable Base Mold for the **JUMBOSETTE**®

Made of Stainless Steel

This mold is suited for all applications in specimen embedding with the JUMBOSETTE™. Manufactured from high-quality stainless steel for optimal thermal conductivity, the mold has a highly polished surface for easy paraffin block removal. Reusable. Stackable for easy storage.

Cat. #	Size (mm)	Qty/Pk
M474-7	66 x 45 x 15	10

Accessories

M495-6

Modular Storage Drawer

Made of high impact polystyrene

This drawer provides permanent storage & identification of up to 165 embedding rings or 250 cassettes per drawer. It is stackable to any convenient height, thanks to interlocking ridges on top and bottom. Made of high impact resistant plastic. Identification labels included.

Cat. #	Dimensions	Qty/Cs
M495-6	40.5 cm x 23 cm x 5.1 cm H (15 ⁷ / ₈ x 9 ¹ / ₈ x 2 ¹ / ₈ in. H)	6

M495-7 Storage Drawer

Made of durable, waterproof, heavy-duty cardboard for long term storage. Requires minimal space. Label and cardboard separators are provided for each box allows recording of specimen number, date and type of specimen. Each box can store up to 165 embedding rings or 250 cassettes. Dimensions: 40.5 cm x 23 cm x 5.1 cm H (15 % x 9 % x 2 % in. H)

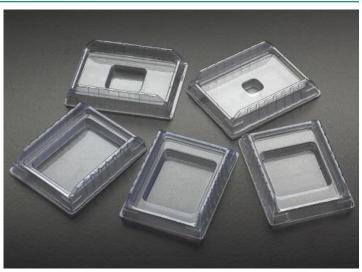
Cat. #	Material	Qty/Cs
M495-7	Heavy-duty cardboard	12

M474 Base Molds

Made of Stainless Steel

Sizes fit most cassettes. Superior thermal exchange. These molds are for all applications in specimen embedding with all styles of Embedding Rings and Cassettes. Manufactured from high-quality stainless steel for optimal thermal conductivity, the molds have a highly polished surface for easy paraffin block removal. Well corners are rounded for optimal paraffin ribboning.

Cat. #	Size (mm)	Qty/Pk
M474-1	7 x 7 x 5	12
M474-2	15 x 15 x 5	12
M474-3	24 x 24 x 5	12
M474-4	30 x 24 x 5	12
M474-5	37 x 24 x 5	12


M475

Disposable Base Molds

Made of PVC

Simport® disposable base molds offer ease and convenience of operation. They are inexpensive enough to be discarded after use, yet strong enough to be reused. Thanks to the specially formulated plastic material, they offer excellent thermal exchange. They have a smooth interior finish and rounded corners facilitating specimen removal. Also, they are available in the same variety of sizes as metal molds and can be used with the same styles or types of cassettes and embedding rings. Each case contains two dispenser boxes of 500 base molds.

Cat. #	Size (mm)	Qty/Cs
M475-1	7 x 7 x 5	1000
M475-2	15 x 15 x 5	1000
M475-3	24 x 24 x 5	1000
M475-4	30 x 24 x 5	1000
M475-5	37 x 24 x 5	1000

Accessories

M476 Biopsy Foam Pads

Made of polyester urethane foam

Simport® biopsy foam pads are used to hold biopsies in place and prevent them from being lost during processing. They are made of a specially formulated foam which is always verified for consistency throughout in order to achieve optimum solvent flow. Biopsy samples are sandwiched between two foam pads and are placed either in tissue capsules or cassettes* with metal or plastic lids. M476-4 model is to be used with the Micromesh™ and Slimsette™ Cassettes. M476-5 is specially suited for the Histosette® II Cassettes on page 26 & 27. Will resist temperatures from -40 °C to 121 °C.

Cat. #	For use with	Size (mm)	Qty/Pk	Qty/Cs
M476-1	Cassettes	30.2 x 25.4 x 2	1000	10 000
M476-2	Small capsules	25.4 x 2.7	1000	10 000
M476-3	Large capsules	34.6 x 2	1000	10 000
M476-4*	Slimsette	27.4 x 25.4 x 2	1000	10 000
M476-5**	Histosette® II	30.2 x 25.4 x 2	1000	10 000

*Use with the following Simport® cassette Series: M509 and M510.** Use with the following Simport® cassette Series: M492, M493, M485 and M486.

M476-5 is specially suited for the Histosette® II Cassettes on page 26 & 27.

M478 **Biopsy Bags**

Made of nylon

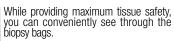
These sturdy biopsy bags are made of white nylon thin mesh (0.3 mm diameter), reducing the risk of specimen loss during processing. While solvent resistant, they provide great tissue safety and excellent fluid exchange. In order to ease specimen removal, bags can be peeled open. All seams are heat-sealed. Available in three sizes.

Cat. #

M478-1

M478-2

M478-3



- Transfer the biopsy in the bag with a pair of forceps OR empty both fixative and specimen in the bag. Let the fixative drip out of the bag in a container, close the bag and insert in a cassette.
- 2. After processing, remove bag from cassette. Open with care, extending the edges.

Qty/Pk

Extract biopsy and proceed with your

Dimensions (mm)

30 X 50

45 X 75

75 X 95

M477-6

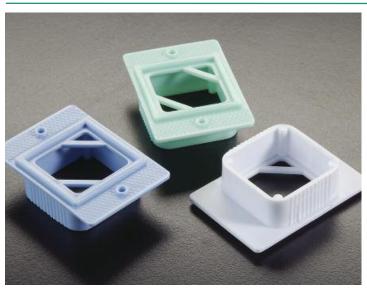
Paraffin Block Mailer, 6 compartments

Made of PVC

At last, a transport container made especially for paraffin blocks. Sturdy and easy to use, the Simport® mailer is transparent for easy viewing of contents. It can be used for handling and shipping up to 6 blocks as needed, while having to keep only one model of block mailer in inventory. The attached cover is easy to close but very secure when closed. Suitable for all regular models of tissue and biopsy cassettes.

Cat. #	Dimensions	Qty/Cs
M477-6	134 x 141 x 29 mm H (5 ½ x 5 ½ x 1 ½ in. H)	50

M470 & M471


Tissue Capsules

Made of polypropylene

These capsules are suitable for holding tissue samples during processing. The lids have a frosted write-on area for sample identification and an open mesh area to facilitate fluid exchange. The entire surface of the base is also an open mesh. The lid snaps securely on the base, eliminating the risk of tissue loss during processing.

For IVD use (

Cat. #	Size (mm)	Color	Qty/Cs
M470	28 x 5 H	White	1000
M471	38 x 10 H	White	1000

M460 Embedding Rings

Made of high impact polystyrene

For IVD use (E

Embedding rings are suitable for holding and identifying tissue sample blocks and fit well in microtome chuck adapters. The etched writing surface on the ring is marked with an identification number and placed on top of the sample block. Additional paraffin is poured into the base mold to cement the ring onto the tissue block. The embedding ring securely holds the tissue sample in the microtome chuck adapter for sectioning and then identifies the sample while in storage. Rings are available in different colors. Each case contains 4 dispenser boxes of 250 rings.

Cat. #	Color	Qty/Box	Qty/Cs
M460	White	250	1000
M460-3	Pink	250	1000
M460-4	Green	250	1000
M460-5	Yellow	250	1000
M460-6	Blue	250	1000

M590BK

Cassette Labeler Thermal Printing Foil

This hot foil tape is used on the Thermo Scientific PrintMate and MicroWriter, RA Lamb and TBS Shurmark cassette labelers. Will print up to 20,000 cassettes per roll, subject to the amount of data being printed on each cassette. Dimensions: 1 1/8" wide x 400' long (28.6mm wide x 122m long).

Cat. #	Color	Qty/Cs
M590BK	Black	5

NEW

M495-12

Write-ON™ Marker Pen

This pen is specially suited to be used on anterior surfaces and sides of Histology Cassettes. Ink will dry almost instantly. Ink withstands temperatures up to 195 °C and is resistant to solvents.

Cat. #	Color	Qty/Pk
M495-12	Black	10

M795-1

Diamond Stylus for Microscope Slide Labelers

This diamond stylus is perfectly suited for the Thermo Scientific PrintMate and MicroWriter, RA Lamb and TBS Shurmark microscope slide labelers. Manufactured with a consistent even coating of diamond dust. The 2.35mm shaft is made from stainless steel.

Cat. #	Color	Qty/Pk
M795-1	Diamond Stylus	6

SLIDE STORAGE

The Junior model can hold up to 200 slides per unit in just 860 cm³ (53 cu. in.) and is stackable for space efficient storage. Each SlideFile™ Jr. includes a slide box and a removable tray. A tinted hinged cover makes the contents of the box easy to see at a glance. The base is available in five different colors to help slide classification and to minimize the possibility of sample mix-up.

The key to the SlideFileTM Jr. is a removable tray inside the storage box having fifty individual numbered slots. All slides are stored upright for easier insertion and removal. Simply tilt them forward and backward with one finger to easily and rapidly pick up the slide you need. A unique feature with this system is to be able to read bar codes without having to remove the slides from the box.

For space saving purposes, you can double the amount of slides simply by storing two slides per slot. And for maximum storage space, simply remove the tray and line up 200 slides in 3 rows for long term storage. Will resist temperatures between -80 °C and +80 °C. Not autoclavable.

Dimensions: 82 x 140 x 86 mm H (3 ¹/₄ x 5 ¹/₂ x 3 ³/₈ in. H)

Read bar codes without having to remove slides from tray.

Simply tilt slides forward or backward with one finger to easily and rapidly pick up the one you need.

and it will store up to 200 slides.

Remove slide tray

Cat. #	Color	Qty/Pk	Qty/Cs
M700-50B	Blue	1	10
M700-50G	Green	1	10
M700-50P	Pink	1	10
M700-50W	White	1	10
M700-50Y	Yellow	1	10

Removable tray makes it easy to carry slides around and store up to 50 slides vertically (1 per slot) or 100 slides vertically (2 per slot)

Two index cards numbered from 1 to 50 are supplied with each box.

M710-50

DrainRackTM Jr.

Made of high impact polystyrene

Can hold up to 100 microscope slides in 50 individual numbered slots. Will resist temperatures between

-80 °C and +80 °C. Not autoclavable.

Cat. #	Color	Qty/Pk	Qty/Cs
M710-50B	Blue	1	10
M710-50G	Green	1	10
M710-50P	Pink	1	10
M710-50W	White	1	10
M710-50Y	Yellow	1	10

SLIDE STORAGE

Each SlideFileTM Storage System includes a slide box and a removable tray. A tinted hinged cover makes the contents of the box easy to see at a glance. The base is available in five different colors to help in slide classification and to minimize the possibility of sample mix-up.

The key to the SlideFile™ System is a removable tray inside the storage box having a hundred individual numbered slots. All slides are stored upright for easier insertion and removal. Simply tilt them forward and backward with one finger to easily and rapidly pick up the slide you need. A unique feature with this system is to be able to read bar codes without having to remove the slides from the box.

For space saving purposes, you can double the amount of slides simply by storing two slides per slot. For maximum storage space, simply remove the tray and line up 400 slides in 3 rows for long term storage. Will resist temperatures between -80 °C and +80 °C. Not autoclavable.

Dimensions: 82 x 245 x 86 mm H (3 1/4 x 9 5/8 x 3 3/8 in. H)

Cat. #	Color	Qty/Pk	Qty/Cs
M700-100B	Blue	1	10
M700-100G	Green	1	10
M700-100P	Pink	1	10
M700-100W	White	1	10
M700-100Y	Yellow	1	10

Read bar codes without having to remove slides from

Removable tray makes it easy to carry slides around and store up to 100 slides vertically (1 per slot) or 200 slides vertically (2 per slot)

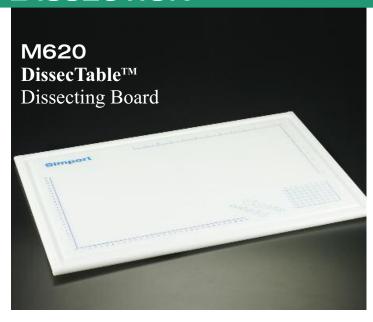
Simply tilt slides forward or backward with one finger to easily and rapidly pick up the one you need.

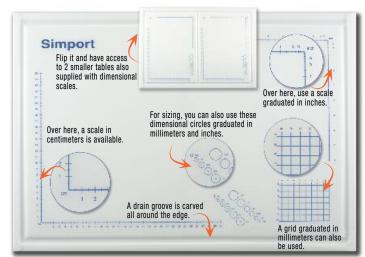
Remove slide tray and store up to 400 slides.

Two index cards numbered from 1 to 100 are supplied with each box.

M710-100

DrainRackTM


Made of high impact polystyrene


This rugged tray used as a drain rack can hold up to 200 microscope slides in 100 individual numbered slots. All slides are stored upright for easier insertion and removal. Simply tilt them forward and backward with one finger to easily and rapidly pick up the slide you need. A unique feature with the DrainRack™ is to be able to read bar codes without having to remove the slides from the box.

For space saving purposes, you can double the amount of slides simply by storing 2 slides per slot, giving you a capacity of 200 slides instead of 100. Not autoclayable.

Cat. #	Color	Qty/Pk	Qty/Cs
M710-100B	Blue	1	10
M710-100G	Green	1	10
M710-100P	Pink	1	10
M710-100W	White	1	10
M710-100Y	Yellow	1	10

DISSECTION

Patent applied for

Made of high-density polyethylene

A new and unique approach makes this dissecting board more convenient than any other found on the market today. It is no more necessary to buy different sizes as this board offers a large surface on one side and two smaller ones on the other side.

Made of heavy-duty stain resistant thick polyethylene, it will last for years to come without changing shape, bending or swelling. Will not dull fine surgical blades. In order to contain fluids, a drain groove is carved all around the edge of the DissecTableTM.

On one side, you will find a large cutting area including dimensional scales in inches and centimeters, along with a 60 x 80 mm grid made of 48 x 10 mm squares. Six dimensional circles are also printed from $\frac{1}{6}$ in and 4 to 14 mm in diameter. Flip it over and the other side offers two cutting boards half the size with the same dimensional features printed on each one of them. All corners have rubber feet giving more stability to the working surface.

Dimensions: 575 mm x 400 mm x 12.5 mm (23 x 16 x 1/2 in H)

M618

DissecTable™ Jr. Dissecting Board

Made of high-density polyethylene

A smaller DissecTableTM is also available with the same features and benefits as the M620. Perfect for smaller counter area. Dimensions: 330.2 mm x 279.4 mm x 12.5 mm (13 x 11 x $^{1}/_{2}$ in H)

Cat. #	Description	Qty/Cs
M618	DissecTable™ Jr.	1

M625

Board Base (for use with M620)

Made of high impact polystyrene

To make dissecting more confortable, this heavy-duty base is used to elevate the $DissecTable^{\mathbb{M}}$ Board to the right height. The bases are stackable and will not move sideways during the dissecting work. The base will also retain excess fluid if necessary.

Dimensions: 481 mm x 656 mm x 91 mm (19 1/4 x 26 1/4 x 3 5/8 in H)

Cat. #	Description	Qty/Cs
M625	DissecTable™ Board Base	1

M630

Disposable Dissecting Board

The DispoCut™ Disposable Dissecting Board is strong yet inexpensive enough to throw away. It is especially developed to provide a clean, safer and more efficient way of handling infectious tissue specimens for the pathologist. It can be used on both sides, a great money saving feature. Printed with helpful imperial and metric dimensional scales in inches, centimeters and millimeters. Available in three sizes to accommodate small biopsies to large gross anatomy procedures.

DispoCutTM is extrusion made using a copolymer resin in order to increase impact and temperature performance. Copolymer resins are also used because they retain the ability to be flexed an unlimited number of times without breaking. Chemically, DispoCut is inert. At regular temperatures most oils, solvents and water have no effect, allowing it to perform under adverse weather conditions or as a product component exposed to harsh chemicals.

Each surface has many conveniently located rulers including seven dimensional circles from 4 to 16 mm in diameter and five larger ones from 2 to 6 cm in diameter. Surface will not dull knifes. Perfect for use with dissecting pins. All sizes of DispoCutTM Disposable Dissecting Boards are ideal for pathology labs, medical schools, classroom dissections, forensic labs, medical research labs, pharmaceutical labs, surgery and more.

Temperature performance range: -27 °C to 71 °C (17 °F to 160 °F)

Melting point: 162 °C (324 °F)

Sterilization: DispoCut™ may be wiped down with alcohol with no effect on the material. DispoCut™ is being autoclaved (in excess of 3 years) in many situations. There are some extreme settings which will be damaging and we suggest a trial to determine performance in your equipment. Ethylene oxide gas sterilization has no effect of any kind on DispoCut™ and may be repeated any number of times.

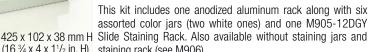
Physical Data: Specific Gravity 0.90 - 0.96. Essentially insoluble in water.

Cat. #	Description	Qty/Pk	Qty/Cs
M630-1	152 x 203 mm (6 x 8 in.)	24	96
M630-2	229 x 305 mm (9 x 12 in.)	12	48
M630-3	305 x 483 mm (12 x 19 in.)	12	24

SLIDE STAINING

Finally a user-friendly approach for staining your microscope slides, the EasyDip™ Slide Staining System has two components: a square staining jar and a 12-position vertical slide rack. As an extra benefit, they are available in 5 different colors to help better identifying contents or applications.

The staining jar being made of resistant acetal plastic will not break like most glass jars do. It will resist to most staining agents including alcohol and xylene (but not phenol, iodine or ferric chloride). The wide stable base offers greater stability while the inside is recessed, allowing for a smaller reagent volume of only 80 ml. Easy to clean and no metals to corrode. Ideal for special stains, frozen sections and special processes. Dimensions: $64 \times 76 \times 92 \text{ mm H}$ (2 $^{1}/_{2} \times 3 \times 3 ^{5}/_{8} \text{ in. H}$).


EasyDip™ Slide Staining Jar

Cat. #	Color	Qty/Cs
M900-12B	Blue	6
M900-12G	Green	6
M900-12P	Pink	6
M900-12W	White	6
M900-12Y	Yellow	6
M900-12AS	Assorted*	1 Kit

*This kit includes 5 jars (one of each color) and 1 rack (M905-12DGY).

M906AS EasyDipTM Slide Staining Kit

Cat. #	Description	Qty/Cs
M906AS	EasyDip Kit	1
M906	Aluminum Holder only	1

M905-12DGY

EasyDipTM Slide Staining Rack

Made of acetal

The EasyDip™ Slide Staining Rack will hold up to 12 microscope slides with dimensions such as 75 x 25 mm (3 x 1 in.) and even 76 x 26 mm and with a thickness of 1.0 and 1.2 mm. The slides fit into individual slots for free passage and rapid drainage of staining fluids. Available in dark gray only. Dimensions: 60 x 64 x 97 mm H (2 1/4 x 2 1/2 x 3 3/4 in. H)

Cat. #	Color	Qty/Cs
M905-12DGY	Dark Gray	6

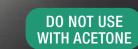
A handle is permanently attached to the rack for easy insertion and removal.

Staining rack is placed at an angle to facilitate draining of slides.

Vertical rack eases slide removal without using forceps.

Slides are fully secured when lid is upright. Rotate it sideways to allow their easy removal.

SLIDE STAINING


M920 StainTrayTM Slide Staining System

Made of ABS Plastic

Two covers are available:

Another user friendly approach to immunohisto-chemistry staining. This tray is also suitable not only for routine staining requiring a humid chamber but is also ideal for Hematology, Cytology and Microbiology laboratories. Manipulation is made safe and easy by using only one hand.

The StainTray™ has a black base made of tough ABS plastic withstanding a wide range of chemicals (Avoid chlorinated hydrocarbons). It will accept up to 20 slides on four plastic rails covered with a polymer strip to perfectly hold slides even if tray is held at an angle. When humidity is needed, wells between rails will hold up to one ml of water securely without splashing. Middle wells will hold up to 2 ml each. Rails are raised not only to avoid water touching the slides but to make them more easily retrieveable. The base will also hold excess stain solution dripping from the slides. Four rubber feet ensure greater base stability. Units are stackable for space saving purposes.

- A clear one allowing for visual examination. Made of PETG with a temperature range of -20 °C to +60 °C.
- A black lid for fluorescent work. Made of ABS with a temperature range of -80 °C to +80 °C

Dimensions: $38 \times 24 \times 4.5 \text{ cm}$ H. $(15 \times 9)^{3}/8 \times 1)^{3}/4 \text{ in. H}$

Cat. #	Description	Capacity	Qty/Cs
M920-1	Base with Clear Lid	20 slides	1
M920-2	Base with Black Lid	20 slides	1
M921-1	Clear Lid only for M920	-	1
M921-2	Black Lid only for M920	-	1

M918

StainTrayTM Slide Staining System

Made of ABS Plastic

This 10-slide StainTray[™] offers the same great features and benefits as the M920 Model. Dimensions with cover: $24 \times 24 \times 4.5$ cm H (9 3 /8 \times 9 3 /8 \times 1 3 /4 in. H)

Cat. #	Description	Capacity	Qty/Cs
M918-1	Base with Clear Lid	10 slides	1
M918-2	Base with Black Lid	10 slides	1
M919-1	Clear Lid only for M918	_	1
M919-2	Black Lid only for M918	-	1

Plastic rails are covered with a polymer strip holding slides perfectly even if tray is held at an angle.

Wells between rails can be used to hold water for techniques needing a humid environment

A black lid for fluorescent work. Made of ABS with a temperature range of -80 $^{\circ}$ C to +80 $^{\circ}$ C.

SLIDE MAILING

Can also be used as a slide staining jar

M950

LockMailerTM Microscope Slide Jar

Jar made of Polypropylene Closure made of High Density Polyethylene

At last a tamper evident multi purpose container for mailing, staining or storing microscope slides.

Constructed of extra-strong and clear polypropylene, it will hold up to 4 standard 3 x 1 in. or 75×25 mm slides vertically. Inside channels are slotted to keep slides safely separated. Perfect also for slide conveyors and specimen slide transport between the doctor's office and the lab.

It incorporates a unique tamper evident leakproof screw cap ensuring your peace of mind during transport or storage situations where someone might have manipulated your slides without your prior knowledge. Can also be used without the tamperproof locking mechanism. For color coding purposes, use a CapinsertTM (see T345 Series) that may be inserted on top of closure. Ten different colors are available.

The container is designed for maximum stability on a bench top while having an internal volume of only $12\ ml$.

Dimensions: 35 x 87 mm H (1 3/8 in. x 3 7/16 in. H)

Cat. #	Color	Qty/Pk	Qty/Cs
M950-4MA	Magenta	100	500

How to use the LockMailer™

Push up the attached tab on side of vial.

Make sure it firmly clicks in place.

Screw on tamperproof cap all the way.

When opening the vial, the tamper evident ring will detach itself from the cap.

The LockMailer™ can also be used without the tamper evident feature.

T345

Color Coding CAPINSERTTM

Made of polypropylene

The CapinsertTM is used to color code a multitude of Simport[®] products according to your specific needs. It is inserted on top of the closure and has a write-on frosted area for sample identification.

Cat. #	Color	Cat. #	Color	Qty/Bag
T345B	Blue	T345P	Pink	500
T345GY	Gray	T345R	Red	500
T345G	Green	T345V	Violet	500
T345L	Lilac	T345W	White	500
T3450	Orange	T345Y	Yellow	500
* Blue, lilac, red	d, yellow and white	T345AS	Assorted*	500

SLIDE MAILING

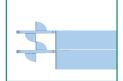
For many years now, noticeable improvements on the design of slide mailers have been scarce. Following many suggestions from users in the lab field, Simport® is now proud to come out with the UniMailer™, a truly versatile model which can easily be used for handling and shipping one or as many slides as needed, while having to keep only one model in inventory.

The UniMailer™ is a one-slide tray allowing the use of as many as necessary according to the number of slides to be mailed. Not only do they fit snugly on top of each other but they are also secured by an innovative locking mechanism. You may also want to insert a tamper evident tie or attach an ID label.

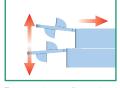
Designed to accommodate 25×75 mm and 1×3 in. slides with or without cover glasses, they can also be used to provide safe storage for those valuable slides you want to protect. It provides for multiple reuse or single use disposability.


Each tray allows placing the slide in a horizontal position for full visibility. Slides can easily be inserted with an exact fit to avoid any breaking during transport. When pressed on either side while in the UniMailerTM, they will pop-up for easy removal.

Identification can be made on three sides or on top. Made of an almost unbreakable plastic, they are available in many popular pastel colors for easy identification. Packed in bag of fifty slide mailers. Will resist temperatures between -80 °C and +80 °C.


Dimensions: 89 x 29 x 6 mm H (3 $^{1}/_{2}$ x 1 $^{3}/_{8}$ x $^{1}/_{4}$ in. H)

Cat. #	Color	Qty/Pk	Qty/Cs
M800-100B	Blue	50	200
M800-100G	Green	50	200
M800-100P	Pink	50	200
M800-100W	White	50	200
M800-100Y	Yelow	50	200


Not only do $UniMailer^{TM}$ slide mailers fit snugly on top of each other but are secured by an innovative locking mechanism.

To close, slide upper UniMailer™ forward until locking pins are engaged.

Locking mechanism is now functional.

To open, insert finger between two locking tabs and slide back upper UniMailer™.

The UniMailer™ is easy to use

Identify content by writing on sides.

Place slide in UniMailer™

Place another slide mailer on top and slide forward until a click is heard.

If desired, you can attach a tamper evident tie.

To open, slightly lift front tab to disconnect lock and slide back upper UniMailerTM.

Press on slide to lift and remove.

CONTAINERS

M960 HISTOTAINERTM I

TAMPER EVIDENT Prefilled Specimen Containers, 50% Filled with 10% Neutral Buffered Formalin

Container made of polypropylene Closure made of polyethylene

Especially designed for collection, transport and storage of histology specimens, Simport® offers shatter resistant polypropylene containers, eliminating most problems of leakage and evaporation. The magenta lids are ribbed for easy opening when hands are wet or gloved while the jars are stackable for easy, safe storage and translucent to allow specimens to be viewed without opening. The closures are manufactured from virgin polyethylene with a unique integrated leak-resistant seal. Container's vertical walls offer excellent rigidity.

The uniqueness of the HistoTainer™ I is that it incorporates an innovative tamper evident screw cap ensuring your peace of mind during transport or storage situations where someone might have manipulated the specimen without your prior knowledge. Can also be used without using the tamper evident locking mechanism. For color coding purposes, use a CapinsertTM (see T345 Series) on top of closure. Ten different colors are available.

Both containers and caps are manufactured without the use of plasticisers or mold release agents. All material used in manufacture are free from latex. All containers are 95 kPa compliant. Available in many sizes from 20 to 120 ml. Packaging in trays of 24, cases of 96.

The Simport® HistoTainer™ I is half filled with 10% Neutral Buffered Formalin as a fixative. 10% Neutral Buffered Formalin penetrates quickly, but fixes slowly. The Simport® Formalin is enhanced by a buffering capacity optimizing histological results by light microscopy and immunohistochemistry.

Cat. #	Packaging	Volume	Qty/Tray	Qty/Cs
M960-20FMA	Tamper Evident – Internal Trays	20 ml	24	96
M960-40FMA	Tamper Evident – Internal Trays	40 ml	24	96
M960-60FMA	Tamper Evident – Internal Trays	60 ml	24	96
M960-90FMA	Tamper Evident – Internal Trays	90 ml	24	96
M960-120FMA	Tamper Fyident – Internal Trays	120 ml	24	96

How to use the HistoTainer™I

Remove Screw Cap.

Place sample in container

Push up the attached tab on side of container. Make sure it firmly clicks in place.

Screw cap completely on container.

When opening the container, the tamper evident ring will detach itself from the can

The HistoTainer™ can also be used without the tamper evident

As a cassette holder, the 40 ml HistoTainer™ M960 Series packaged M960-40MA containing 20 ml of 10% Formalin, is the ideal size container to transport up to four tissue samples pre-inserted in processing / embedding cassettes.

in sturdy cardboard boxes with handles for easy carrying

Anatomy of the HistoTainer™ I

- Ridges around base offer a better grip during opening and closing.
- Warning label has space for patient identification.
- Insertion of a Capinsert™ allows color coding identification of contents.
- Molded ridges around lid make it easy to open and
- Tamper evident sealing ring for better sample protection.
- Specially designed locking tab to ensure a perfect tamper evident seal.
- 10% Neutral Buffered Formalin helps to protect sample integrity.

CONTAINERS

M961 HISTOTAINERTM II

Container made of polypropylene / Closure made of polyethylene

Especially designed for collection, transport and storage of histology specimens, Simport® offers shatter resistant polypropylene containers, eliminating most problems of leakage and evaporation. Containers are manufactured from virgin, translucent polypropylene. The white lids are ribbed for easy opening when hands are wet or gloved while the jars are stackable for easy, safe storage. Jars are translucent and specimens can be viewed without having to open the lid. Closures are manufactured from virgin polyethylene with a unique integrated leak-resistant seal. Container's vertical walls offer excellent rigidity. For color coding purposes, use a Capinsert™ (see T345 Series) on top of closure. Ten different colors are available.

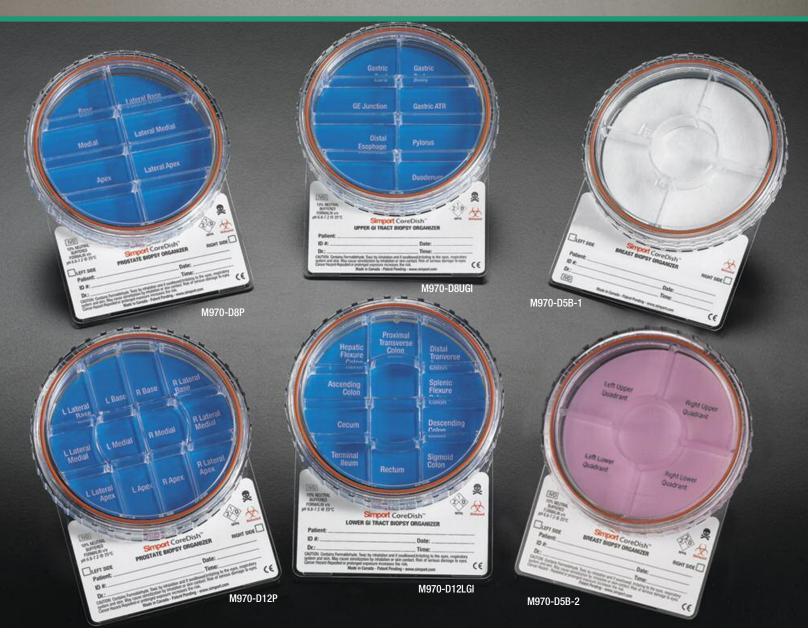
Both containers and caps are manufactured without the use of plasticisers or mold release agents. All materials used in manufacturing are free from latex. Containers are 95 kPa compliant. Available in many sizes from 20 to 120 ml. Packaging is offered in trays of 24, cases of 96.

The HistoTainer™II is half filled with a choice of fixatives. 10% Neutral Buffered Formalin penetrates quickly, but fixes slowly. The Formalin is enhanced by a buffering capacity optimizing histological results by light microscopy and immunohistochemistry. Bouin, Hollande and Zinc Formalin fixatives are also available. Please contact Simport for minimum ordering quantities.

M961 Series packaged in sturdy cardboard boxes with handles for easy carrying.

Warning label has space for patient identification

For Capinsert[™] details, please refer to T345 on page 52.



Cat. #	Volume	Fixative	Qty/Tray	Qty/Cs
M961-20FW	20 ml	Formalin	24	96
M961-20BW	20 ml	Bouin	24	96
M961-20HW	20 ml	Hollande	24	96
M961-20ZW	20 ml	Zinc Formalin	24	96
M961-40FW	40 ml	Formalin	24	96
M961-60FW	60 ml	Formalin	24	96
M961-60BW	60 ml	Bouin	24	96
M961-60HW	60 ml	Hollande	24	96
M961-60ZW	60 ml	Zinc Formalin	24	96
M961-90FW	90 ml	Formalin	24	96
M961-120FW	120 ml	Formalin	24	96

CoreDish

Multiple Biopsy Containers

Half Prefilled with 10% Formalin

Made of polystyrene

Few recommendations concerning how the biopsies should be handled have been published. Performing a large number of biopsies means an increase in the number of containers handled and consequently a technical overload of the transmission network, which occurs without any financial counterpart. A new approach had to be developed in order to increase productivity.

Simport® is proud to offer a multi-compartment container in the shape of a dish and half prefilled with 10% Neutral Buffered Formalin, for holding and transporting biopsies. It is supplied with a leakproof closure with o-ring ensuring total protection of contents. **The Simport® CoreDish® measures only 15 x 95 mm in diameter.** Each compartment is clearly identified to allow proper placement and visualization of the biopsy being inserted. **Thanks to the CoreDish® it is no more necessary to use a multitude of individual containers, thereby reducing risks of confusion.** The Simport® CoreDish® offers many configurations in order to hold different biopsies of the breast, prostate, upper Gl tract and lower Gl tract. A label allows essential information to be written such as patient I.D., doctor, date and time.

The CoreDish® is also available without formalin. See series M971.

M970-D5B-1

BREAST BIOPSY CONTAINER For separation, imaging and transport of core needle specimens

Designed specifically for radiography, separation, imaging and transport of core needle breast biopsies. Special absorbent liner keeps specimens moist (when saline solution is added) prior to radiography while helping to attenuate the x-ray beam. Four compartments are clearly identified (3, 6, 9 and 12) and the radiolucent numbers show up clearly on the radiograph. Formalin may be added prior to transportation to pathology for analysis. An area for writing patient information is provided on the label. Leakproof seal, thanks to o-ring lid, allows for safe and easy transport of the specimens from collection to analysis. Not formalin prefilled. **Not available in USA.**

Cat. #	For	Compartments	Prefilled	Qty/Pk	Qty/Cs
M970-D5B-1	Breast	5	NO		10

M970-D5B-2

BREAST BIOPSY CONTAINER

Simport® is proud to offer a multi-compartment container (out of five compartments, four are labelled: Left Upper Quadrant, Right Upper Quadrant, Left Lower Quadrant, Right Lower Quadrant) in the shape of a dish and half prefilled with 10% Neutral Buffered Formalin, for holding and transporting biopsies. It conforms to OSHA directives. Each compartment is clearly identified to allow proper placement and

visualization of the breast biopsy being inserted. A writing area for patient information is provided. Leakproof seal, thanks to o-ring lid, allows for safe and easy transport of the specimens from collection to analysis.

Cat. #	For	Compartments	Prefilled	Qty/Pk	Qty/Cs
M970-D5B-2	Breast	5	YES	1	10
M971-D5B-2	Breast	5	NO	1	10

M970-D8P

PROSTATE BIOPSY CONTAINER

For prostate biopsies. Eight compartments. Leakproof seal thanks to o-ring lid. An area for patient information is provided. Six labeled compartments: Base, Lateral Base, Medial, Lateral Medial, Apex, Lateral Apex. Leakproof seal, thanks to o-ring lid, allows for safe and easy transport of the specimens from collection to analysis.

Cat. #	For	Compartments	Prefilled	Qty/Pk	Qty/Cs
M970-D8P	Prostate	8	YES	1	10
M971-D8P	Prostate	8	NO		10

M970-D8UGI

UPPER GI TRACK BIOPSY CONTAINER

For upper GI track biopsies. Eight compartments. Leakproof seal thanks to o-ring lid. An area for patient information is provided. Seven labeled compartments: Gastric Card, Gastric Body, GE Junction, Gastric ATR, Distal Esophage, Pylorus, Duodenum. Leakproof seal, thanks to o-ring lid, allows for safe and easy transport of the specimens from collection to analysis.

Cat. #	For	Compartments	Prefilled	Qty/Pk	Qty/Cs
M970-D8UGI	Upper Gi Trac	t 8	YES	1	10
M971-D8UGI	Upper Gi Trac	t 8	NO	1	10

M970-D12LGI

LOWER GI TRACK BIOPSY CONTAINER

For lower GI track biopsies. Twelve compartments. Leakproof seal thanks to o-ring lid. An area for patient information is provided. Ten labeled compartments: Proximal Flexure Colon, Hepatic Flexure Colon, Distal Transverse Colon, Ascending Colon, Splenic flexure Colon, Cecum, Decending Colon, Terminal Ileum, Rectum, Sigmoid Colon. Leakproof seal, thanks to o-ring lid, allows for safe and easy transport of the specimens from collection to analysis.

Cat. #	For	Compartments	Prefilled	Qty/Pk	Qty/Cs
M970-D12LGI	Lower Gi Trac	t 12	YES	1	10
M971-D12LGI	Lower Gi Trac	t 12	NO		10

M970-D12P

PROSTATE BIOPSY CONTAINER

For prostate biopsies. Twelve compartments. Leakproof seal thanks to o-ring lid. An area for patient information is provided. Twelve labeled compartments: L Base, R Base, L Lateral Base, R Lateral Base, L Lateral Medial, L Medial, R Medial, R Lateral Medial, L Lateral Apex, L Apex, R Apex, R Lateral Apex. Leakproof seal, thanks to o-ring lid, allows for safe and easy transport of the specimens from collection to analysis.

Cat. #	For	Compartments	Prefilled	Qty/Pk	Qty/Cs
M970-D12P	Prostate	12	YES	1	10
M971-D12P	Prostate	12	NO	1	10

CoreDish

GENERAL PURPOSE MULTIPLE BIOPSY CONTAINERS

M970-D5

5-COMPARTMENT BIOPSY CONTAINER

Made of polystyrene

Performing a large number of biopsies means an increase in the number of containers handled and consequently a technical overload of the transmission network, which occurs without any financial counterpart. A new approach had to be developed in order to increase productivity. Simport® is proud to offer a five-compartment container in the shape of a dish and half prefilled with 10% Neutral Buffered Formalin, for holding and transporting biopsies. It is supplied with a leakproof screw closure with o-ring ensuring total

protection of contents. A writing area for patient information is provided. Compartments are numbered from 1 to 5.

Cat. #	For	Compartments	Prefilled	Qty/Pk	Qty/Cs
M970-D5	General purpose	e 5	YES	1	10
M971-D5	General purpose	e 5	NO	1	10

M970-D8

8-COMPARTMENT BIOPSY CONTAINER

Made of polystyrene

Simport® is proud to offer a multi-compartment container for up to 8 biopsies. The screw on lid incorporates an o-ring in order to make it leakproof and protect its contents. The CoreDish® conforms to OSHA directives. An area for patient information is provided on the label. Compartments are numbered from 1 to 8.

Cat. #	For	Compartments	Prefilled	Qty/Pk	Qty/Cs
M970-D8	General purpose	e 8	YES	1	10
M971-D8	General purpos	e 8	NO	1	10

M970-D12

12-COMPARTMENT BIOPSY CONTAINER

Made of polystyrene

This model will contain up to twelve biopsies. The screw on lid incorporates an o-ring in order to make it leakproof and protect its contents. The CoreDish® conforms to OSHA directives. Compartments are numbered from 1 to 12.

Cat. #	For	Compartments	Prefilled	Qty/PK	Qty/Cs
M970-D12	General purpose	e 12	YES	1	10
M071 D10	Caparal purpas	. 10	NO	4	10

A security label is supplied to ensure integrity of contents from collection stage to reopening of CoreDish®.

To close, turn clockwise untill you feel a firm stop.

M975 The CorePickerTM

Made of polystyrene

A practical tool and a great help to pick up and handle biopsies out of the CoreDish®. Packed in tamperproof resealable bags.

Cat. #	Length	Qty/Bag	Qty/Pk
M975	53 mm (2 ¹ / ₈ in.)	25	125

M976
Shipping Box
for CoreDish®

Made of cardboard

This sturdy and easy-to-assemble shipping box is most convenient for transporting or mailing the Simport® CoreDish®.

Cat. #	Description	Qty/Pk
M976	Cardboard Box	10

SLIDE STORAGE

M750-20

SlideFolderTM

Base made of high impact polystyrene / Hinged doors made of polystyrene

The SlideFolder™ will hold up to twenty standard microscope slides 75 mmx 25 mm (3 x 1 in.) and is made of two parts: a base holding the slides horizontally offering numbered spaces for easy identification, and transparent doors which can either cover the slides or be swung behind the SlideFolder™ for space saving purposes.

The base is available in 5 different colors, allowing color-coding classification of the slides. Each slide location is identified with a number from 1 to 20. Removal of slides is made easy simply by pressing on one end, which will automatically lift the other end.

The two transparent hinged covers offer a full view of each slide without having to remove it from its position in the SlideFolder and allows easy reading of ID labels with or without an optical bar code reader. All units are stackable and take minimum space on laboratory tables or shelves. Will resist temperatures between -80 °C and +80 °C. Not autoclavable.

Dimensions: $192 \times 295 \times 11 \text{ mm H}$ $(7^{9}/_{16} \times 11^{11}/_{16} \times 7^{7}/_{16} \text{ in. H})$

For light sensitive slides, use M752-20WOP SlideFolder™ with opaque doors.

Qty/Cs

For easier access to slides, simply swing the transparent hinged covers behind the SlideFolder™.

Easy slide removal by pressing down on one end and lifting it from the other.

M750-20G	Green	10
M750-20GY	Gray	10
M750-20W	White	10
M750-20Y	Yellow	10
M750-20AS	Assorted (two of each color)	10
Cat. #	Color	Qty/Cs
M752-20W0P	Opaque doors and white base	10

Color

M755-20

SlideTrayTM

Made of HIPS

Cat. #

M750-20B

The SlideTray™ is a convenient microscope slide holder made of heavy-duty plastic lasting many years even under the most adverse conditions. The SlideTray™ will hold up to 20 microscope slides in an almost horizontal position. Each slide can be easily removed and placed back in its position. The SlideTray™ is easily stackable and will take minimum space on any shelf or laboratory counter. Even when trays are stacked, slides are well protected and will not touch the tray above.

Dimensions: 206 x 299 x 18 mm H (8 $^{1}/_{8}$ x 11 $^{3}/_{4}$ x $^{11}/_{16}$ in. H)

Slides are easily inserted and removed.

Cat. #	Color	Qty/Cs
M755-20W	White	10

$CytoSep^{m}Family$

The Simport® CytoSep™ Family is a series of Cytology Funnel sample chambers specially designed to concentrate cells into thin-layer preparations. Simport® is one of the most trusted names in the disposable plasticware marketplace, providing quality products since 1975 and is proud to offer the largest choice of Cytology Funnels on the market by manufacturing numerous models for use with the Shandon Cytospin® 4 Cytocentrifuge, the Sakura Cyto-Tek® Cytocentrifuge, the Hettich Cyto-System, the Unitech (Wescor) Cytopro® Cytocentrifuge and finally the StatSpin Cytofuge® 2 Cytocentrifuge. They are safer than reusable sample chambers and lower your risk of contamination to pathogenic samples. After use, they are simply discarded. The CytoSep™ Cytology Funnels are a time saver compared to cleaning and sterilizing reusable sample chambers. The Simport® CytoSep™ Cytology Funnels are recommended for the following applications:

- Bronchial alveolar lavage washes
- Cerebrospinal fluids
- Exudates and transudates
- Fine needle aspirates, and other aspirates
- Gastric washes
- Oral cavity washes

- Pericardial fluids
- Peritoneal fluids
- Pleural fluids
- Sputum
- Synovial fluids
- Urine

Consumables for the Shandon Cytospin® Cytocentrifuges

Single CytoSepTM Cytology Funnel

Fully compatible with the Shandon CytoSpin® Centrifuge, Simport® CytoSep™ Cytology Funnels can be used to deposit a thin layer of cells in a clearly defined area of a microscope slide. The filter card absorbs any excess fluid. These Cytology Funnels have the filter cards pre-attached for consistent, reliable results. No alignment necessary! All disposable Funnels are packaged with closure caps to seal in specimen for added protection. All components also available separately.

For sample volumes of up to 0.5 ml, use the Simport® Single CytoSep™ Cytology Funnel with a White Filter Card and Cap. It provides a cell deposition area of 6 mm (28 mm squared). Can be use with all stainless steel slide clips.

For samples volumes of up to 0.4 ml, such as Spinal Fluids for example, use the Single CytoSep™ Cytology Funnel with Brown Filter Card and Cap. It allows for a slower absorption of fluids. All the individual components are also available separately.

Now available! Individually wrapped

Cat. #	Description	Qty/Pk	Qty/Cs
M964-10FW	Single Funnel with White Filter & Cap	50	500
M964-10FW1	Individually wrapped Single Funnel with White Filter & Cap	100	500
M964-10FT	Single Funnel with Tan Filter & Cap	50	500
M964-1	Single Funnel only	-	500
M965C	Cap only	50	500
M965FW	White Filter Paper for Single Funnel	200	-
M965FT	Tan Filter Paper for Single Funnel	200	-

Double CytoSep™ Cytology Funnel

The Simport® Double CytoSep™ Cytology Funnel with disposable sample chamber allows for two samples to be run simultaneously on a single slide and is ideal for immunohistochemistry work. The Double CytoSep™ Cytology Funnel provides a cell deposition area of 6 mm (28 mm square) for sample volumes of up to 0.5 ml. The filter card comes pre-attached. Cap is included. Can be use with all stainless steel slide clips. Each component is also available separately.

Now available! Individually wrapped

Cat. #	Description	Qty/Pk	Qty/Cs
M964-20FW	Double Funnel with White Filter & Cap	50	500
M964-20FW1	Individually wrapped Double Funnel with White Filter & Cap	100	500
M964-1D	Double Funnel only	-	500
M965C	Cap only	50	500
M965FWD	White Filter Paper for Double Funnel	200	-

CYTOLOGY FUNNELS

Consumables for the Shandon Cytospin® Cytocentrifuges

ALL PLASTIC Single and Double CytoSep™ Cytology Funnels

These are so easy to use, and improve turn-around time while giving more diagnostic information. Being totally disposable, they eliminate time-consuming decontamination and cleaning. They are safe to use and reduce the risk of exposure to pathogenic samples. They also decrease the possibility of cross-contamination.

This series of Simport® Single CytoSep™ Cytology Funnels is single-use. The disposable sample chambers do not need metal clips and are designed to meet any processing requirement. They are capable of producing high quality thin-layer slide preparations while improving laboratory efficiency.

The disposable Sample Chambers with White Filter Cards are used for sample volumes up to 0.5 ml; the ones with the Brown Filter Cards are for sample volumes up to 0.4 ml. The cell deposition area is 6 mm in diameter (28 mm squared). Filter cards are pre-attached. Excellent for scanty specimens such as CSF. All components also available separately.

This CytoSep™ Cytology Funnel allows two sample deposition areas on a single slide. The disposable sample chambers do not need metal clips. inserted filter card. This Sample Chamber is also disposable.

Cat. #	Description	Qty/Pk	Qty/Cs
M965-10FW	Single Funnel with White Filter & Cap	40	480
M965-10FT	Single Funnel with Tan Filter & Cap	40	480
M965-20FW	Double Funnel with White Filter & Cap	40	480

YOU CAN ALSO REUSE OR ACQUIRE ANY INDIVIDUAL COMPONENTS WHEN NEEDED

Each component is strong enough to be reused.

Cat. #	Description	Qty/Pk	Qty/Cs
M965-1	Single Funnel only	50	500
M965-1D	Double Funnel only	50	500
M965B	Base only	50	500
M965C	Cap only	50	500
M965FW	White Filter Paper for Single Funnel	200	-
M965FT	Tan Filter Paper for Single Funnel	200	-
M965FWD	White Filter Paper for Double Funnel	200	-

Insert funnel into base.

Insert microscope slide.

Place new filter onto microscope slide.

Clip top of funnel and base together.

Your CytoSep ALL PLASTIC Cytofunnel is now ready to

Consumables for the Shandon Cytospin® Cytocentrifuges

MEGA CytoSepTM Cytology Funnel

The Simport® ALL PLASTIC CytoSep™ MEGA Funnel provides an easy, efficient and cost effective method of producing high quality thin-layer slide preparations. It eliminates the need for stainless steel slide clips, offering laboratory workflow improvements. It is dedicated for convenient preparation of larger volume samples.

This larger funnel is quick and easy to remove. The large rectangular cell deposition area of 22 x 14.75 mm (325 mm square) provides for up to 12 times the sample volume (6 ml) of the single CytoSep[™] Cytology Funnel. It produces more cost-effective thin layer preparations when compared to other thin layer methods. Strategically placed baffles inhibit cell settling which results in uniform cell deposition and excellent quality slide preparations. Simport® ALL PLASTIC CytoSep[™] Cytology MEGA Funnel and Cap minimize user exposure to pathogens while reducing the risk of specimen cross-contamination. Can prepare both air-dried and fixed preparations.

Cat. #	Description	Qty/Pk	Qty/Cs
M965-40	MEGA Funnel & Cap	40	480

Filter Card for Shandon Reusable TPX Single Sample Chamber

Cat. #	Description	Qty/Pk	Qty/Cs
M965FWDV	White Filter Paper for TPX Cytology Funnel	200	-

Consumables for the Sakura Cyto-Tek® Cytocentrifuge

CytoSepTM Cytology Funnel for Sakura Cyto-Tek[®] Cytocentrifuge

All components are available separately. The Simport[®] CytoSep[™] Cytology Funnel offers the 1 ml fluid chamber, the base holder, the chamber cap, and the filter paper.

Cat. #	Description	Qty/Pk	Qty/Cs
M963-1	Fluid Chamber only, 1 ml	50	200
M963B	Base Holder only	50	200
M963C	Cap only	50	200
M963FW	White Filter Card only	-	200

Consumables for the Unitech (Wescor) Cyto-System

Single CytoSep™ Cytology Funnels for the Unitech (Wescor) Cytopro® Cytocentrifuge

These funnels will snap quickly in place, allowing the pad to align correctly with the sample tunnel. Made with a compression ring around the sample hole in order to better control the rate of absorption and to ensure more consistent results.

Two ports, one in the sample well and one in the tunnel, provide great versatility. Samples are loaded directly through the chamber caps to prevent spilling of hazardous ones. Caps provide added safety to the operator. A large, centered cell deposit area makes screening easier and more sensitive.

Cat. #	Description	Qty/Pk	Qty/Cs
M967-10FW	Single Sample Chamber With White Filter Paper & Cap	48	-
M967FW	White Filter Paper for Single Funnel		100

Dual CytoSep™ Cytology Funnels for the Unitech (Wescor) Cytopro® Cytocentrifuge

With two chambers, cell deposit areas are close together and easy to find, helping to speed sample analysis. Two deposit areas on one slide enhance all of the advantages of the popular single chambers. Reduced time spent loading and unloading slides.

- Two cell deposit areas on the same slide means true cost reduction.
- Two deposit areas on one slide enhance productivity for those under regulatory workload limitations.
- Reduced time spent loading and unloading slides between the rotor, stainer and microscope.
- Cell deposit areas are close together and easy to find, helping to speed sample analysis.
- Cytopro's 7 mm diameter spot provides a 37% larger area to collect cells.

	Cat. #	Description	Qty/Pk	Qty/Cs
	M967-20FW	Double Sample Chamber With White Filter Paper & Cap	48	-
For IVD use (M967FWD	White Filter Paper for Double Funnel		100

Consumables for the StatSpin Cytofuge® 2 Cytocentrifuge

Simport® CytoSep™ Cytology Funnels for the StatSpin Cytofuge® 2 Cytocentrifuge allow cells to gently concentrate in a 7 mm diameter area on the slide while supernatant is simultaneously absorbed by a filter card. Will accept 50-400 µl of sample. Produces cell monolayer presentations of excellent quality. Disposable filter sold separately.

	Cat. #	Description	Qty/Pk
	M968-1	Cell Concentrator	48
For IVD use	M968FW	Disposable Filter Concentrator	200

Consumables for the Hettich Cyto-System

The Simport® CytoSep™ Funnel Chambers for the Hettich Cyto-System optimize lab throughput with multiple funnel options in 2, 3, or 4 funnels per slide. These funnels are perfect for every application such as CSF, Viral infections, bronchial secretions and come in four sizes from 1 ml to 8 ml. The 1 ml chamber is for small-volume samples of low cell contents. Both 2 and 4 ml chambers are suggested for cell-rich samples, e.g. pleura, ascites and bronchial washings while the 8 ml chamber is perfect for large-volume samples such as urine.

Cat. #	Description	Qty/Pk	Qty/Cs
M966-1	One-Funnel Chamber, 1 ml	10	50
M966-2	One-Funnel Chamber, 2 ml	10	50
M966-4	One-Funnel Chamber, 4 ml	10	50
M966-8	One-Funnel Chamber, 8 ml	10	50
M966FW	Filter for 1, 2 and 4 ml Chambers	200	-
M966FW8	Filter for the 8 ml Chamber	200	

TRANSFER PIPETS

P200

DROPETTE[®] Disposable Transfer Pipets

Made of low density polyethylene

These all-in-one pipets eliminate the hazard of broken glass and exposure to infectious materials. Put an end to matching rubber bulbs with glass pipets. Molded from see-through low density polyethylene. Inert to biological fluids and most acids. The low-affinity surface reduces the loss of cells and valuable proteins due to binding. Can be sealed and refrigerated. They work well whenever there is a need for quick, safe transfer of fluids. Temperature resistant down to -196 °C. Can be gaz (EtO) sterilized. Choose between 12 very popular models, available in several sizes, tip designs and lengths, in sterile or non sterile packaging. Seven models provide graduations.

TRANSFER PIPETS

- Will not shatter
- Can be used in liquid nitrogen
- Non toxic and inert
- No bulb to insert or remove
- Uniform drop size

Cat. #	Sterile	Graduated	Length	Capacity	Bulb draw	Inner pack
P200-10 P200-101S* P200-1020S*	:		6.3 cm	1.2 ml	0.9 ml	Loose 1 20
P200-14 P200-141S* P200-1420S*	:	•	11.4 cm	1.5 ml	0.8 ml	Loose 1 20
P200-20 P200-201S* P200-2020S*			8.7 cm	1.7 ml	0.9 ml	Loose 1 20
P200-30 P200-301S* P200-3020S*	:	•	13.8 cm	3 ml	2.1 ml	Loose 1 20
P200-44 P200-441S* P200-445S* P200-4410S* P200-4420S*	:		15.5 cm	4 ml	3.1 ml	Loose 1 5 10 20
P200-52 P200-521S* P200-525S* P200-5210S* P200-5220S*			15 cm	5 ml	3.1 ml	Loose 1 5 10 20
P200-56 P200-561S* P200-565S* P200-5610S* P200-5620S*		·	15.5 cm	5 ml	1.9 ml	Loose 1 5 10 20
P200-58 P200-581S* P200-5820S*		•	15.6 cm	5 ml	1.8 ml	Loose 1 20
P200-58V P200-58V1S* P200-58V20S*	:	•	14.5 cm	5 ml	1.8 ml	Loose 1 20
P200-60 P200-601S* P200-605S* P200-6010S* P200-6020S*			22.5 cm	6 ml	2.3 ml	Loose 1 5 10 20
P200-72 P200-721S* P200-725S* P200-7210S* P200-7220S*		·	15.5 cm	7 ml	3.2 ml	Loose 1 5 10 20
P200-82 P200-821S* P200-8220S*			15 cm	8 ml	4.6 ml	Loose 1 20

Packaging:

All non sterile pipets are in boxes of 500 and cases of 5000.

Exception: P200-82 are in boxes of 400 and cases of 4000.

Most sterile pipets are in boxes of 400 and cases of 4000.

* Available on request only. Minimum quantities apply. Please enquire for more details.

THERMAL CONDUCTIVE RACKS

Tube Rack Collection

OhillBlock™ thermo-conductive metal alloy tube racks eliminate inconsistencies which occur due to inserting tubes directly into ice, dry ice, alcohol baths, water baths and other common laboratory temperature sources. Place the ChillBlock™ tube rack directly onto a temperature source and it will rapidly adapt to that temperature from -150°C to >+100°C. ChillBlock™ tube racks ensure +/- 0.1°C temperature uniformity of all tubes when cooling, freezing or heating. ChillBlock™ tube racks are available in a variety of sizes for tubes such as microcentrifuge tubes, cryogenic vials, PCR tubes, SBS-compliant strips and plates and 15 mL and 50 mL tubes.

APPLICATIONS

Use on Ice

- Adapts from ambient to <4°C in 60-90 seconds
- Samples and labels stay dry, organized and uniform in temperature
- · Hours of ice cooling without direct ice contact

Use on Dry Ice

- Adapts from ambient to -78°C in 5-7 minutes
- Eliminates ethanol cost savings, no hazardous waste
- Equal or better freezing rate when compared to other methods

Use above Liquid Nitrogen

- Adapts from ambient to -140°C in 15 minutes
- · Samples are upright and organized as they freeze
- No direct contact between samples and liquid nitrogen

Heating methods

Use chills with heat sources such as:

- waterbath
- incubator
- hot plate, oven

THERMAL CONDUCTIVE RACKS

\$700-1, -4, -6, -8, -10

Chill Block™ Microcentrifuge Tube Racks

ChillBlockTM Microcentrifuge Tube Racks are available in five models from 6 to 96 wells. An alphanumeric grid allows for indexing rows and columns, therefore facilitating tube location. These racks will hold 1.5 ml and 2.0 ml snap cap Microcentrifuge tubes. They will also accommodate the popular 0.5 ml to 2.0 ml screw cap Microcentrifuge tubes such as the Simport Microwtube® Series.

Cat. No	Wells	Dimensions (L x W x H)	Qty/Cs
S700-1	6	2.4 x 1.7 x 1.5 in / 6.0 x 4.3 x 3.2 cm	1
S700-4	15	3.8 x 2.4 x 1.5 in / 9.6 x 6.0 x 3.2 cm	1
S700-6	30	4.5 x 3.8 x 1.5 in / 11.4 x 9.6 x 3.2 cm	1
S700-8	90	10.8 x 4.5 x 1.5 in / 27.4 x 11.4 x 3.2 cm	1
S700-10	96	8.7 x 5.9 x 1.5 in / 22.1 x 14.9 x 3.2 cm	1

This group of racks will also accommodate the popular 0.5 ml to 2.0 ml screw cap Microcentrifuge tubes such as the Simport Micrewtube® Series

These wells have a vertical wall in order to accomodate all types of Microcentrifuge tubes up to 2 ml.

Alphanumeric identification of wells facilitating tube location.

In your Chillip Iooek™ racks, have you ever considered using Simport® Microcentrifuge tubes?

The Micrewtube®Family

Screw Cap Microcentrifuge Tubes

T332 - T361 Series

A Simport MICREWTUBE® has a multitude of applications around your lab. It is ideal for freezer storage, boiling application, centrifugation etc. and will fit most standard microcentrifuge rotors. Six styles of caps to choose from, and three sizes of conical bottom or self-standing tubes (0.5 ml, 1.5 ml and 2 ml).

Cliklok™ MicrocentrifugeTube Family

T330 & T331 Series

- Extra clarity for better visual inspection
- · Boil-proof design
- Ultra rugged walls made for high speed centrifugation
- Unique ClickLok™ sealing mechanism
- . Made of highest purity polypropylene.

THERMAL CONDUCTIVE RACKS

S700-14, -16, -18

Chille Fit Microcentrifuge Microcentrifuge

Tube Racks

S700-16 and S700-18 ChillBlock™ Profile Fit Microcentrifuge Tube Racks are available with either 15 & 30 wells holding 1.5 ml snap cap Microcentrifuge tubes. S700-14 is a 30-well rack and will hold 0.5 ml tubes. An alphanumeric grid allows for indexing rows and columns, therefore facilitating tube location. Each cavity will ensure a more efficient thermal exchange since it is in direct contact with the entire tube wall.

Cat. #	Wells	Dimensions (L x W x H)	Qty/Cs
S700-14	30	4.5 x 3.8 x 1.5 in / 11.4 x 9.6 x 3.2 cm	1
S700-16	15	3.8 x 2.4 x 1.5 in / 9.6 x 6.0 x 3.2 cm	1
S700-18	30	4.5 x 3.8 x 1.5 in / 11.4 x 9.6 x 3.2 cm	1

Excellent temperature exchange since tube wall is in direct contact with rack.

Alphanumeric identification of wells facilitating tube location.

In your Chimili Injury racks, have you ever considered using Simport® Microcentrifuge tubes?

Cliklok™ MicrocentrifugeTube Family

T330 & T331 Series

- Extra clarity for better visual inspection
- · Boil-proof design
- Ultra rugged walls made for high speed centrifugation
- Unique ClickLok™ sealing mechanism
- Made of highest purity polypropylene.

S700-24, -28

Cluster or Storage

Tube Racks

The ChillBlock™ Cluster Tube Racks are available in two models of 96 wells each. An alphanumeric grid allows for indexing rows and columns, therefore facilitating tube position. S700-24 rack will hold 0.5 ml cluster tubes while S700-28 rack accepts 1.2 or 1.4 ml cluster tubes.

Cat. #	Wells	Dimensions (L x W x H)	Qty/Cs
S700-24	96	5 x 3.4 x 1.5 in / 12.8 x 8.5 x 3.2 cm	1
S700-28	96	5 x 3.4 x 1.7 in / 12.8 x 8.5 x 4.3 cm	1

In your Chimili lock racks, have you ever considered using Simport® Cluster tubes?

Cluster Tubes T100 Series

Tubes are made of autoclavable polypropylene and are available either individually or in strips of 8 or 12 detachable tubes. Tubes have a gross volume of 1.2 ml but with a cap in place, they will hold 1.1 ml. Caps are made of polyethylene and are not autoclavable. They are available individually and also in strips of 8 or 12.

S700-35, -40

Chill Block™ 15 ml and 50 ml Centrifuge

Tube Racks

The ChillBlock™ 15 ml and 50 ml Centrifuge Tube Racks are available in two configurations, one of 9 wells for 15 ml centrifuge tubes and one of 4 wells for 50 ml centrifuge tubes. An alphanumeric grid allows for indexing rows and columns, therefore facilitating tube location.

Cat. #	Wells	For tubes	Dimensions (L x W x H)	Qty/Cs
S700-35	9	15 ml	3.1 x 3.1 x 4.2 in / 7.9 x 7.9 x 10.7 cm	1
S700-40	4	50 ml	3.5 x 3.5 x 4.4 in / 8.9 x 8.9 x 11.2 cm	1

Alphanumeric identification of wells facilitating tube

In your Chillip locale racks, have you ever considered using Simport® Centrifuge tubes?

15 ml Centrifuge Tubes - T408

Suitable for general centrifugation, urinalysis procedures and serum separation. These conical bottom tubes are chemically clean and metal free, ready to use and uniform in size and shape.

50 ml Centrifuge Tubes - T420

These centrifuge tubes are useful for collecting and transporting biological specimens. Leakproof characteristics are ensured by a flat top plastic screw cap with an inner sealing lip. Tubes are made of translucent polypropylene or optically clear polystyrene with molded graduations from 2.5 to 50 ml.

\$700-56 \$700-52

Rack S700-56 will hold twelve 1.5 and 2.0 ml Microcentrifuge tubes and 0.2 ml PCR tubes or strips.

Rack S700-58 will hold up to 24 x 1.5 or 2.0ml Microcentrifuge tubes.

Alphanumeric identification of wells facilitating tube location.

\$700-50, -52, -56, -58

SBS Footprint Tube Racks

These ChillBlockTM SBS Footprint Tube Racks conform in size to the SBS standard footprint and are compatible for quick transfer to automated systems. An alphanumeric grid allows for indexing rows and columns, therefore facilitating tube location. Depending on the model, they will accept 200 μL PCR tubes, strips, plates and most Microcentrifuge tubes. S700-56 Rack will hold twelve screw cap Microcentrifuge tubes or 1.5 ml and 2.0 ml snap cap Microcentrifuge tubes along with up to 6 PCR strips or 48 individual 0.2 ml PCR tubes.

Cat. #	Wells	Dimensions (L x W x H)	Qty/Cs
S700-50	96	5 x 3.4 x 1 in / 12.8 x 8.5 x 2.5 cm	1
S700-52	384	5 x 3.4 x 0.8 in / 12.8 x 8.5 x 2.3 cm	1
S700-56	60	5 x 3.4 x 1.5 in / 12.8 x 8.5 x 3.2 cm	1
S700-58	24	5 x 3.4 x 1.5 in / 12.8 x 8.5 x 3.2 cm	1

\$700-60, -80, -82, -84

Cryogenic Vial Tube Racks

ChillBlock™ Cryogenic Vial Racks are specially designed for Cryogenic vials and are available in four models with 15 to 45 wells. An alphanumeric grid allows for indexing rows and columns, therefore facilitating tube location. These racks will hold 1.0 ml to 2.0 ml inner and outer threaded Cryogenic vials. They will also accommodate the Simport® similar sample tubes (T500 and T501 Series). Rack S700-60 has a universal locking base, allowing most cryogenic vials and sample tubes up to 5 ml to lock in place and facilitate screw cap removal using only one hand.

Cat. #	Wells	Dimensions (L x W x H)	Qty/Cs
S700-60	24	5 x 3.4 x 1.5 in / 12.8 x 8.5 x 3.2 cm	1
S700-80	15	3.8 x 2.4 x 1.5 in / 9.6 x 6 x 3.2 cm	1
S700-82	30	4.5 x 3.8 x 1.5 in / 11.4 x 9.6 x 3.2 cm	1
S700-84	45	6.8 x 3.8 x 1.5 in / 17.3 x 9.6 x 3.2 cm	1

Alphanumeric identification of wells facilitating tube location

In your Chimili Blook racks, have you ever considered using Simport® Cryovial and Sample tubes?

Cryovial - Series T301, T308, T309, T310, T311

The Simport® Cryovial® Family is the most complete line of cryogenic vials available today. Designed for storing cells, blood, serum and other biological fluids at temperatures as low as -196 °C, these sturdy polypropylene vials offer a high level of chemical resistance.

Sample Tubes - Series T501

Designed for the storage and transportation of biological material. Manufactured from non-toxic polypropylene, the tube provides strength and clarity and exhibits some unique design features. The vial has external threads, providing a smooth and uniform inner surface, thus reducing the risk of contamination.

\$700-90, -92 Chill Block™ Platforms

These two thermo-conductive platforms can be placed in ice, dry ice, liquid nitrogen or even in a water bath. They will keep ChillBlock™ racks at the proper temperature which will remain completely dry while on the platform. The thermo-conductive properties of the ChillBlock™ platforms ensure uniform temperature distribution throughout. **Not available for sale in the USA.**

Cat. #	Dimensions (L x W x H)	Qty/Cs
S700-90	11 x 5.5 x 3.4 in / 27.9 x 14 x 8.6 cm	1
S700-92	11 x 5.5 x 2.5 in / 27.9 x 14 x 6.3 cm	1

By using these platforms, even the ChillBlock™ racks remain completely dry.

Chill Block™ Plastic Racks

\$700-475, -476, -477

Chill Block™ Microcentrifuge Tube Plastic Racks

Made of polycarbonate

An alternative to ice buckets for keeping reagents and enzymes cool. Great for a multitude of tubes such as Microcentrifuge tubes with snap cap or screw cap (in all three racks) along with 1.2 and 2.0 ml Simport® sample tubes (in rack S700-476). Also protects critical samples from temperature fluctuations in the freezers. Base is filled with non-toxic gel. Will maintain temperature for approximately 1 hour on the bench. Freeze for 24 hrs at -20°C to -25°C before use.

Cat. #	Wells	Dimensions (L x W x H)	Qty/Cs
S700-475	12	5.7 x 4.0 x 3.9 in / 15.5 x 10.1 x 9.8 cm	1
S700-476	20	8.25 x 6.4 x 4.4 in / 20.9 x 16.3 x 11.1 cm	1
\$700-477	32	8 9 x 5 0 x 3 8 in / 22 7 x 12 8 x 9 6 cm	1

S700-475

S700-480

Chill Block™ Microcentrifuge Tube

Plastic Rack

Made of polycarbonate

Base and cover are filled with non-toxic gel. Will maintain temperature for approximately 2 hours on the bench. Alphanumeric grid for easy identification of tubes. Also protects critical samples from temperature fluctuations in the freezers. Freeze for 24 hrs at -20°C to -25°C before use.

Cat. #	Wells	Dimensions (L x W x H)	Qty/Cs
S700-480	32	8.9 x 5.0 x 4.4 in / 22.7 x 12.8 x 11.1 cm	1

S700-490

Chill Block™ PCR Plate & Strip

Plastic Rack

Made of polycarbonate

This cooler is designed to protect enzymes & solutions by maintaining them at temperatures between -20°C and -15°C up to 2 hours during sample preparations on the bench. Base is filled with non-toxic gel. The aluminium block has 96 wells to hold tubes, strips or plates. Freeze for 24 hrs at -20°C to -25°C before use.

Cat. #	Wells	Dimensions (L x W x H)	Qty/Cs
S700-490	96	8.25 x 3.8 x 1.5 in / 17.3 x 9.6 x 3.2 cm	1

S700-600

Chill Block™ Cryogenic Vial Cooler

Made of polycarbonate - Cover made of HDPE

Used for cell cryopreservation and recovery, this cooler gives -1°C/min cooling rate for up to 18 cryovials of 1 to 2 ml. The cooler needs 250 ml of 100% isopropyl alcohol and should be placed in a mechanical freezer. mechanical freezer. Screw top 120mm lid secures samples inside container. Vials never come in contact with the alcohol.

Cat. #	Wells	Dimensions (L x W x H)	Qty/Cs
S700-600	18	6.8 x 3.8 x 1.5 in / 17.3 x 9.6 x 3.2 cm	1

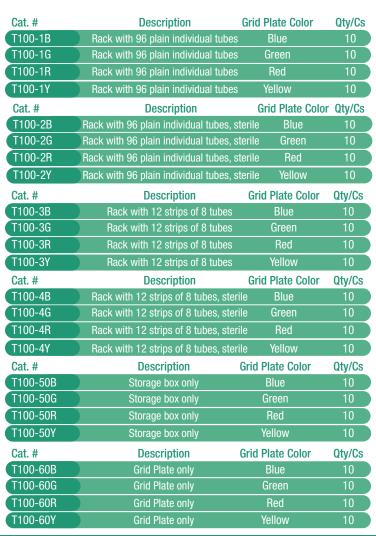
Chill Block Selection Chart

	Item No.	For Use With	Wells	Well Shape	Well Diameter	Well Depth	Dimensions (L x W x H)	Row Spacing	Column Spacing	Weight
area.	S700-1	1.5 ml and 2.0 ml Microcentrifuge Tubes	6	Cylindrical	0.43 in / 11.1 mm	1.28 in / 32.6 mm	2.4 x 1.7 x 1.5 in 6.0 x 4.3 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	194 gr / 0.43 lb
(100)	S700-4	1.5 ml and 2.0 ml Microcentrifuge Tubes	15	Cylindrical	0.43 in / 11.1 mm	1.28 in / 32.6 mm	3.8 x 2.4 x 1.5 in 9.6 x 6.0 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	450 gr / 0.99 lb
	S700-6	1.5 ml and 2.0 ml Microcentrifuge Tubes	30	Cylindrical	0.43 in / 11.1 mm	1.28 in / 32.6 mm	4.5 x 3.8 x 1.5 in 11.4 x 9.6 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	854 gr / 1.88 lb
	S700-8	1.5 ml and 2.0 ml Microcentrifuge Tubes	90	Cylindrical	0.43 in / 11.1 mm	1.28 in / 32.6 mm	10.8 x 4.5 x 1.5 in 27.4 x 11.4 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	2428 gr / 5.35 lt
	S700-10	1.5 ml and 2.0 ml Microcentrifuge Tubes	90	Cylindrical	0.43 in / 11.1 mm	1.28 in / 32.6 mm	18.7 x 5.9 x 1.5 in 22.1 x 14.9 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	2582 gr / 5.69 lb
	S700-14	500 μl Conical Microcentrifuge Tubes	30	Conical	0.33 in / 18.4 mm	1.17 in / 29.6 mm	4.5 x 3.8 x 1.5 in 11.4 x 9.6 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	1010 gr / 2.23 lb
EE SE	S700-16	1.5 ml Conical Microcentrifuge Tubes	15	Conical	0.43 in / 11.1 mm	1.38 in / 35.1 mm	3.8 x 2.4 x 1.5 in 9.6 x 6.0 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	468 gr / 1.03 lb
Carrier.	\$700-18	1.5 ml Conical Microcentrifuge Tubes	30	Conical	0.43 in / 11.1 mm	1.38 in / 35.1 mm	4.5 x 3.8 x 1.5 in 11.4 x 9.6 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	884 gr / 1.95 lb
THE REAL PROPERTY.	S700-24	0.5 ml Cluster Tubes	96	Cylindrical	0.33 in / 8.4 mm	0.63 in / 15.9 mm	5.0 x 3.4 x 1.5 in 12.8 x 8.5 x 3.2 cm	0.35 in / 9.0 mm	0.35 in / 9.0 mm	424 gr / 0.93 lb
Walde.	S700-28	1.4 ml Cluster Tubes	96	Cylindrical	0.33 in / 8.4 mm	1.26 in / 32.1 mm	5.0 x 3.4 x 1.7 in 12.8 x 8.5 x 4.3 cm	0.35 in / 9.0 mm	0.35 in / 9.0 mm	614 gr / 1.35 lb
	\$700-35	15 ml Centrifuge Tubes	9	Cylindrical	0.67 in / 17.1 mm	4.2 in / 106.6 mm	3.1 x 3.1 x 4.2 in 7.9 x 7.9 x 10.7 cm	1.05 in / 26.7 mm	1.05 in / 26.7 mm	1218 gr / 2.68 lb
	S700-40	50 ml Centrifuge Tubes	4	Cylindrical	1.16 in / 29.5 mm	4.0 in / 101.6 mm	3.15 x 3.5 x 4.4 in 8.9 x 8.9 x 11.2 cm	1.05 in / 38.1 mm	1.05 in / 38.1 mm	1584 gr / 3.49 lb
	\$700-50	96-well PCR Plates	96	Conical	0.27 in / 6.9 mm	0.79 in / 20.1 mm	5.0 x 3.4 x 1.0 in 12.8 x 8.5 x 2.5 cm	0.35 in / 9.0 mm	0.35 in / 9.0 mm	522 gr / 1.15 lb

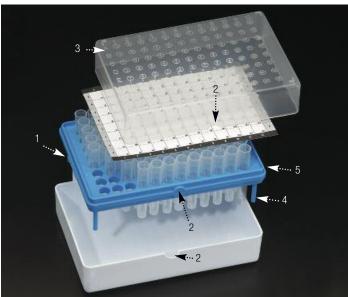
	Item No.	For Use With	Wells	Well Shape	Well Diameter	Well Depth	Dimensions (L x W x H)	Row Spacing	Column Spacing	Weight
	\$700-52	384-well PCR Plates	384	Conical	0.16 in / 4.1 mm	0.32 in / 8.1 mm	5.0 x 3.4 x 0.8 in 12.8 x 8.5 x 2.3 cm	0.18 in / 4.5 mm	0.18 in / 4.5 mm	462 gr / 1.02 lb
CINE 1	\$700-56	1.5 ml and 200 µl Tubes	60	Conical	0.25 in / 6.3 mm 0.43 in / 11.1 mm	0.63 in / 15.9 mm 1.38 in / 35.1 mm	5.0 x 3.4 x 1.5 in 12.8 x 8.5 x 3.2 cm	0.35 in / 9.0 mm 0.7 in / 17.8 mm	0.35 in / 9.0 mm 0.8 in / 20.3 mm	922 gr / 2.03 lb
Trans.	S700-58	1.5 ml Microcentrifuge Tubes	24	Conical	0.43 in / 11.1 mm	1.38 in / 35.1 mm	5.0 x 3.4 x 1.5 in 12.8 x 8.5 x 3.2 cm	0.7 in / 17.8 mm	0.8 in / 20.3 mm	894 gr / 1.97 lb
11001	S700-60	Cryogenic Vials	24	Conical	0.50 in / 12.7 mm	1.29 in / 32.7 mm	5.0 x 3.4 x 1.5 in 12.8 x 8.5 x 3.2 cm	0.76 in / 19.3 mm	0.76 in / 19.3 mm	820 gr / 1.50 lb
	S700-80	Cryogenic Vials	15	Cylindrical	0.50 in / 12.7 mm	1.28 in / 32.6 mm	3.8 x 2.4 x 1.5 in 9.6 x 6.0 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	408 gr / 0.90 lb
	\$700-82	Cryogenic Vials	30	Cylindrical	0.50 in / 12.7 mm	1.29 in / 32.7 mm	4.5 x 3.8 x 1.5 in 11.4 x 9.6 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	776 gr / 1.71 lb
	S700-84	Cryogenic Vials	45	Cylindrical	0.50 in / 12.7 mm	1.29 in / 32.7 mm	6.8 x 3.8 x 1.5 in 17.3x 9.6 x 3.2 cm	0.7 in / 17.8 mm	0.7 in / 17.8 mm	1178 gr / 2.60 lb
	\$700-90	ChillBlock Tube Racks	N/A	N/A	N/A	N/A	11.0 x 5.5 x 3.4 in 27.9 x 14.0 x 8.6 cm	N/A	N/A	1702 gr / 3.75 lb
	\$700-92	ChillBlock Tube Racks	N/A	N/A	N/A	N/A	11.0 x 5.5 x 2.5 in 27.9 x 14.0 x 6.3 cm	N/A	N/A	1508 gr / 3.32 lb
W	\$700-475	ChillBlock 12 Wells, 1.5 ml Tubes	12	Conical	0.485 in / 12.3 mm	1.56 in / 39.7 mm	5.7 x 4.0 x 3.9 in 14.5 x 10.1 x 9.8 cm	0.84 in / 21.3 mm	0.84 in / 21.3 mm	620 gr /1.36 lb
	\$700-476	ChillBlock 20 Wells, 1.5 ml Tubes	20	Conical	0.490 in / 12.4 mm	1.82 in / 46.2 mm	8.25 x 6.4 x 4.4 in 20.9 x 16.3 x 11.1 cm	1.25 in / 31.7 mm	1.25 in / 31.7 mm	1962 gr / 4.32 lb
	\$700-477	ChillBlock 1.5 ml Tubes	32	Conical	0.485 in / 12.3 mm	1.57 in / 40.0 mm	8.9 x 5.0 x 3.8 in 22.7x 12.8 x 9.6 cm	0.84 in / 21.3 mm	0.84 in / 21.3 mm	1350 gr / 2.97 lb
	S700-480	1.5 ml Tubes (with gel filled cover)	32	Cylindrical	0.485 in / 12.3 mm	1.57 in / 40.0 mm	8.9 x 5.0 x 4.4 in 22.7x 12.8 x 11.1 cm	0.84 in / 21.3 mm	0.84 in / 21.3 mm	1748 gr / 3.85 lb
	\$700-490	0.2 ml PCR Tubes, Strip or Plates	96	Cylindrical	0.25 in / 6.3 mm	0.73 in / 18.4 cm	8.25 x 6.4 x 4.4 in 20.9 x 16.3 x 11.1 cm	0.35 in / 9.0 mm	0.35 in / 9.0 mm	1966 gr / 4.33 lb
	\$700-600	ChillCooler for 1-2 ml Cryogenic Vials	18	Conical	0.6 in / 15.2 mm	1.24 in / 3.1 cm	Ø4.9 x 3.4 in Ø12.5 x 8.6 ina	0.8 in / 20.3 mm	0.8 in / 20.3 mm	192 gr / 0.42 lb

CLUSTER TUBES

T100

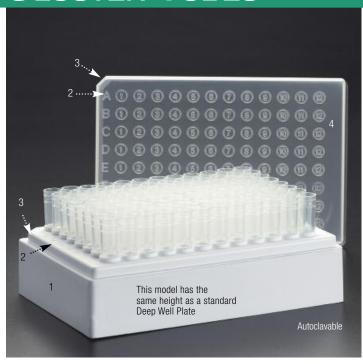

BioTubeTM Racks

Made of polypropylene


The T100 BIOTUBE™ rack with standard 96-well on center spacing of tubes offers a color coding system using colored interchangeable plastic grids. These are used as a support for the 1.2 ml tubes. This unique grid stands on four legs and can be removed from the base of the box and placed on a lab counter as a self-standing support. It can also be placed in a refrigerator or freezer shelf for improved air circulation around tubes, or in a water bath to allow controlled warming of the tubes and their contents. Easy to read numbers and letters used on the box cover for sample identification are also shown on the support grids. The gridded racks are available in a choice of four popular colors: blue, green, red and yellow. These racks and tubes are also ideal for storing, freezing and transporting reagents and specimens. For details on tubes and strips, see page 79.

Rack is made of 3 components:

- A white base
- A removable grid plate that can hold individual or strips of tubes
- A translucent cover



- 1- Convenient carrying handles on both sides
- 2- Cover, grid plate and base are keyed to prevent misalignment
- 3- Easy to read ID numbers and letters
- 4- Grid plate stands on 4 legs and can be placed on a lab counter, in a water bath
- 5- These racks and tubes are also ideal for storing, freezing and transporting reagents and specimens

Products on this page are certified RNase, DNase, Pyrogen and DNA-free.

CLUSTER TUBES

- 1. This rack has a standard microtiter sized footprint.
- Easy to read ID numbers and letters
- 3. Cover and base are keyed to prevent misalignment
- 4. Translucent cover

T101

BioTubeTM Rack

Made of polypropylene

The T101 BIOTUBE™ System is designed in such a way that the 96-place rack, having a standard on-center spacing of tubes, also has a standard microtiter sized footprint. This rack is therefore suitable for use with robotics systems and for transferring liquids with multichannel pipettors and autosampling devices that conform to 96-well microplate systems. The same alphanumeric identification is used on the cover and white base. Autoclavable.

These racks are ideal for HTLV-III testing, bacterial and hybridoma cell uptake studies, cell harvesting, pharmaceutical quality control, receptor binding assays, RIA and EIA.

Cat. #	Description	Qty/Cs
T101-1	Rack with 96 plain individual tubes, non sterile	10
T101-2	Rack with 96 plain individual tubes, sterile	10
T101-3	Rack with 12 strips of 8 tubes, non sterile	10
T101-4	Rack with 12 strips of 8 tubes, sterile	10
T101-5	Rack with 8 strips of 12 tubes, non sterile	10
T101-6	Rack with 8 strips of 12 tubes, sterile	10
Cat. #	Description	Qty/Cs
T101-50	Storage Box only	10

For details on tubes and strips, see page 79.

T105

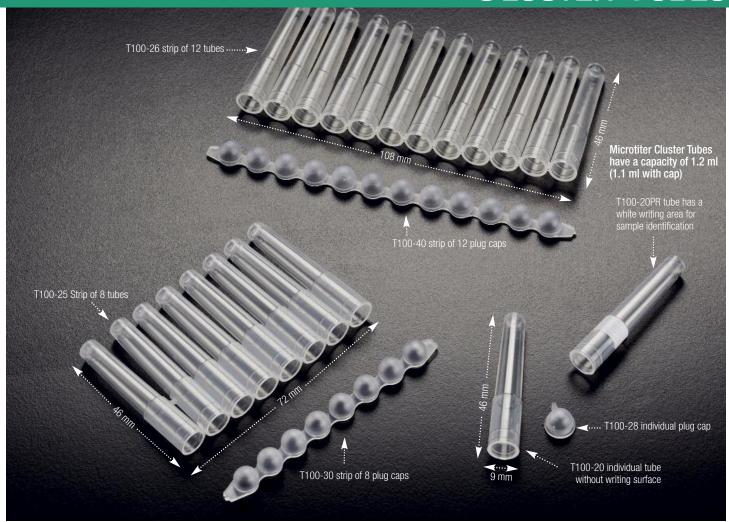
BioTubeTM Storage Rack with 2 ml Tubes

Made of polypropylene

Compatible with most robotic workstations, this polypropylene storage rack can be used with most cell harvesters and leading 8- & 12-channel pipettors.

It contains 96 removable polypropylene square tubes in a 8 x 12 configuration, each having a 2.1 ml capacity (2 ml when capped). Although the tubes are square, the bottom is round to facilitate emptying. For procedures requiring a low surface tension such as protein and nucleic acid work, Simport® has developed a special tube (cat.# T105-20LST) using a type of polypropylene specifically designed to avoid potentially harmful lubricants (such as silicone) while minimizing liquid retention.

The autoclavable rack and tubes (not the cover) are ideal for storage of blood and other biological samples at temperatures, from -170 °C. for freezer storage, up to 121 °C. Tubes are available separately. A PVC cover is also supplied for full protection of tube contents. Racks are stackable to save on storage space. Available in sterile and non sterile versions.



Cat.#	Description	Sterile	Qty/Cs
T105-50	96-well BIOTUBE™ storage rack with tubes	No	10
T105-51	96-well BIOTUBE™ storage rack with tubes	Yes	10
T105-20	2.1 ml square tubes	No	4800
T105-20LST	2.1 ml low surface tension square tubes	No	4800

CLUSTER TUBES

Tubes & Caps

Tubes are made of autoclavable polypropylene and are available either individually or in strips of 8 or 12 detachable tubes. Tubes have a gross volume of 1.2 ml but with a cap in place, they will hold 1.1 ml. Caps are made of polyethylene and are not autoclavable. They are available individually and also in strips of 8 or 12. For procedures requiring low surface tension such as protein and nucleic acid work, Simport® has developed a special tube (see T100-20LST) using a type of polypropylene specifically designed to avoid potentially harmful lubricants while minimizing liquid retention. T100-20 can be centrifuged up to 2000g.

These tubes are ideal for HTLV-III testing, bacterial and hybridoma cell uptake studies, cell harvesting, pharmaceutical quality control, receptor binding assays, RIA and EIA.

Cat. #	Description	Material	Qty/Bag	Qty/Cs
T100-20	Individual tubes, without writing surface, non sterile, bulk	PP	960	4800
T100-20LST	Low surface tension individual tubes, non sterile, bulk	PP	960	4800
T100-20PR	Individual tubes, with writing surface, non sterile, bulk	PP	960	4800
T100-25	Strips of 8 tubes, without writing surface, non sterile, bulk	PP	120	600
T100-26	Strips of 12 tubes, without writing surface, non sterile, bulk	PP	80	400
T100-28	Individual plug caps, non sterile, bulk	PE	960	4800
T100-30	Strips of 8 plug caps, non sterile, bulk	PE	120	600
T100-35	Strips of 8 plug caps, sterile, bulk	PE	120	600
T100-40	Strips of 12 plug caps, non sterile, bulk	PE	80	400

Products on this page are certified RNase, DNase, Pyrogen and DNA-free

T105-26

Mat Cover for T105 Storage Rack

Made of low density polyethylene

Designed to fit the Simport® Biotube™ Storage Rack, these mat covers are made of a specially formulated plastic ensuring great flexibility. When only a few tubes have to be sealed, this flexible mat cover can be split easily in strips of 8 caps.

Cat. #	Description	Sterile	Qty/Cs
T105-26	Mat for T105-50 and T105-51	No	10

T110-5

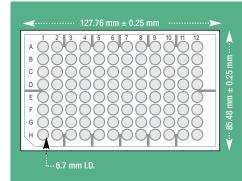
BioBlockTM Deep Well Plates

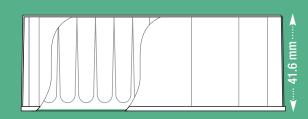
Made of polypropylene

The 1.2 ml capacity round bottom deep well plate (1 ml when capped) is easy to empty completely and ideal for culturing bacterial cells. The polypropylene version can withstand centrifugation up to 6000g by using microtiter plate rotors. It is available in natural and four different colors. DMSO resistant.

- Length 127.76 mm \pm 0.25 mm
- Width 85.48 mm ± 0.25 mm

Cat. #	Description	Color	Qty/Pk	Qty/Cs
T110-5	Plate, 1.2 ml	Natural	4	24
T110-5B*	Plate, 1.2 ml	Blue	4	24
T110-5G*	Plate, 1.2 ml	Green	4	24
T110-5P*	Plate, 1.2 ml	Pink	4	24
T110-5Y*	Plate, 1.2 ml	Yellow	4	24


^{*} Minimum quantity applicable. Please contact one of our customer service agents for further details.


Products on this page are certified RNase, DNase, Pyrogen and DNA-free

96 Wells with Round Bottom

1.0 ml WORKING VOLUME

T110-6 BioBlock™ Deep Well Plate

Made of polystyrene

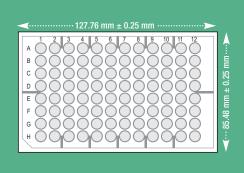
The T110-6 is made of polystyrene and also has 96×1.2 ml capacity round bottom wells. It can withstand 3000g and is available in natural color only. Not DMSO resistant. Packed in bags of 4 plates.

Cat. # Description Color Qty/Pk Qty/Cs
T110-6 Plate, 1.2 ml Natural 4 24

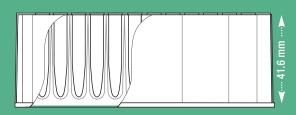
T110-2 & -3

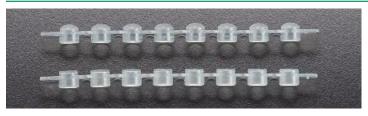
BioBlockTM Deep Well Plates with 600 μl 8-Tube Strips

Made of polypropylene


These plates feature 600 µl wells for smaller volume applications. They include a T110-5 deep well plate along with twelve T110-15 eight-tube strips (see below). In the T110-2 model, tube strips are removable and can also be ordered separately. In the T110-3 model, tube strips are welded by ultrasound. DMSO resistant. Packed in bags of 4 plates.

Cat. #	Description	Qty/Pk	Qty/Cs
T110-2	Plate, 600 µl (removable tube strips)	4	24
T110-3	Plate, 600 µl (fixed tube strips)	4	24


Products on this page are certified RNase, DNase, Pyrogen and DNA-free.



96 Wells with Conical Bottom

600 µl Working Volume


T321-1 & -2

Domed and Flat Cap Strips

Made of polypropylene

For a perfect seal, 8-cap strips are available.

Cat. #	Description	Color	Qty/Cs
T321-1N	Domed cap strip	Natural	125
T321-2N	Flat cap strip	Natural	125

T110-15

Strip of 8 Tubes 600 µl

Made of polypropylene

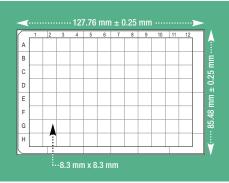
Cat. #	Description	Qty/Cs
T110-15	Strip of 8 tubes, 600 µl	125

T110-10

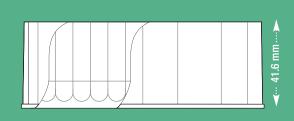
BioBlockTM Deep Well Plates

Made of polypropylene

The 2.2 ml well capacity (2.1 ml when capped) plate is used mainly for compound storage and enzyme assays. Suitable to be used with Qiagen equipment. It is available in natural and four different colors.


DMSO resistant. Packed in a bag of 4 plates.

Cat. #	Description	Color	Qty/Pk	Qty/Cs
T110-10	Plate, 2.1 ml	Natural	4	24
T110-10B*	Plate, 2.1 ml	Blue	4	24
T110-10G*	Plate, 2.1 ml	Green	4	24
T110-10P*	Plate, 2.1 ml	Pink	4	24
T110-10Y*	Plate, 2.1 ml	Yellow	4	24


^{*} Minimum quantity applicable. Please contact one of our customer service agents for further details.

96 Square Wells with Round Bottom

2.0 ml WORKING VOLUME

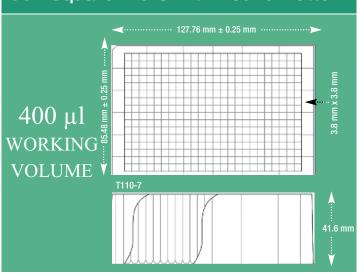
Products on this page are certified RNase, DNase, Pyrogen and DNA-free

A picture is worth a thousand words. A sample, a thousand pictures...

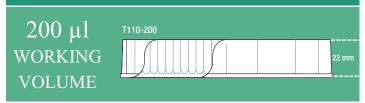
You might look at a picture and read the words under it a thousand times, nothing beats having the product in your own hands for evaluation.

Simport® is proud to offer you the most comprehensive sample program ever developed in the industry. Just for the asking, you can get free of charge a sample of any Simport® product along with a specially designed card describing all the features, benefits and ordering information.

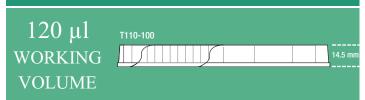
Made of polypropylene


This 384-well plate is available in 3 models from a working volume of 120 μ l to 400 μ l. It is perfect for compound storage and handling of biological samples. Well bottom is round (except for T110-100) to facilitate aspiration. Suitable to be used with DMSO and biological buffers. Packed in a bag of 4 plates.

Bar Code printing available. Contact Simport* for more details. Contact Simport* for more details. CONFORMS TO SISS STANDARDS


T110-7, -100 & -200 BioBlockTM Deep Well Plates

384 Square Wells with Round Bottom



384 Square Wells with Round Bottom

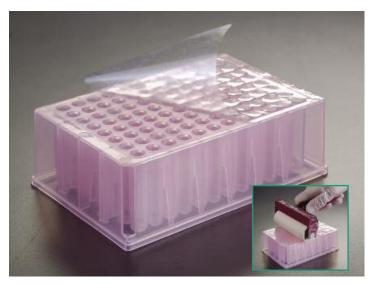
Products on this page are certified RNase, DNase, Pyrogen and DNA-free

384 Square Wells with Flat Bottom

Cat. #	Description	Color	Qty/Pk	Qty/Cs	Cat. #	Description	Color	Qty/Pk	Qty/Cs
T110-7	Plate 400 µl	Natural	4	24	T110-100P*	Plate 120 µl	Pink	4	24
T110-7B*	Plate 400 µl	Blue	4	24	T110-100Y*	Plate 120 µl	Yellow	4	24
T110-7G*	Plate 400 µl	Green	4	24	T110-200	Plate 200 µl	Natural	4	24
T110-7P*	Plate 400 µl	Pink	4	24	T110-200B*	Plate 200 µl	Blue	4	24
T110-7Y*	Plate 400 µl	Yellow	4	24	T110-200G*	Plate 200 µl	Green	4	24
T110-100	Plate 120 µl	Natural	4	24	T110-200P*	Plate 200 µl	Pink	4	24
T110-100B*	Plate 120 µl	Blue	4	24	T110-200Y*	Plate 200 µl	Yellow	4	24
T110-100G*	Plate 120 ul	Green	4	24	*N Allerian constitution	-likla Diana anatast and of			

T110-25, -26, -27 & -37

Mat Covers for Deep Well Plates


Designed to fit the Simport[®] Bioblock[™] Family, these mat covers are made of a specially formulated plastic ensuring great flexibility. They allow for maximum sample volume in each well. They are resistant to DMSO and biological buffers.

T110-25, T110-26 and T110-27 are made of polyolefin and Elastomer. They should be used within a temperature range of -80 $^{\circ}$ C to +80 $^{\circ}$ C.

The T110-37 is made of thermoplastic rubber and will resist temperatures from -170 $^{\circ}$ C to +121 $^{\circ}$ C. Only the T110-37 is autoclavable.

Cat. #	Description	Qty/Cs
T110-25	For 1.2 ml 96-well plates	24
T110-26	For 2.1 ml 96-well plates	24
T110-27	For 120 µl to 400 µl 384-well plates	24
T110-37	For 120 µl to 400 µl 384-well plates	24

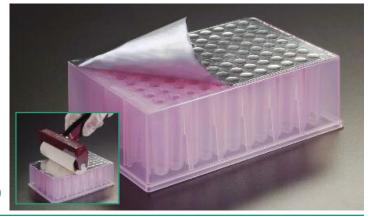
T329-3 & -4

SecureSealTM Adhesive Film for Microplates

Simport® adhesive sealing films reduce sample-to-sample or well-to-well contamination and/or spill over. SecureSeal™ is economically priced and has the differential advantage of perforated end tabs and a multiple split backing which allow for easier and more accurate positioning and more secure sealing. The polyester based film with acrylic adhesive is inert and thus compatible with almost all microplate procedures. The functional temperature range of the product is -40 °C to +120 °C. SecureSeal™ is less than .001% moisture permeable under high humidity conditions and less than .01% oxygen permeable. DMSO resistant. Each package contains 100 sheets. Use T329-9 Amplate™ Roller for a perfect seal.

Cat. #	Description	Sterile	Qty/Pk	Qty/Cs
T329-3	SecureSeal™	No	100	1000
T329-4	SecureSeal™	Yes	100	1000

T329-5


SecureSealTM

Aluminium Sealing Foil

This type of material is ideal for manual sealing during PCR work and also for high throughput applications. Adhesive backing makes it easy to apply. Will resist temperatures from -80 °C to +120 °C. Pierceable with a pipet tip for easy access to sample. DMSO resistant.

It is recommended to use the Amplate[™] Roller (T329-9) to ensure a perfect bond, eliminating the danger of evaporation. No heat sealer needed.

Cat. #	Description	Qty/Pk
T329-5	Peeling foil	100 sheets

T329-9

AMPLATETM Roller

For ensuring a perfect seal when using either SecureSeal™ sealing film or aluminum foil on microtiter or deep well plates. Roller made of medial hard rubber. Heavy-duty handle with comfort grip reducing fatigue. Will last a long time.

Cat. #	Size	Qty/Pk
T329-9	10.16 cm (4 in.)	1

BAR CODING

A barcode is a piece of automatic identification technology that stores information. Barcodes are "machine-readable codes" which can be used to reduce errors, process many samples, track products etc... Simport® offers customised bar-coded products such as Cryogenic Vials, Microcentrifuge Tubes, Sample Tubes or any other tubes with a white background on which the barcode can be printed.

Why use bar codes?

Bar codes play an essential role in tracking samples. They provide a tool for reviewing the large quantities of data. A bar code provides the safest way to keep track of your sample. The code is extremely durable and will help reduce human errors. Bar-coded products are suitable for automation or manual operations. Some bar-coded products provide a trouble-free human readable code, which can be read and manually entered when a scanner is not available.

Other advantages of using barcodes are:

- Reduce human errors
- Improve quality controls
- Reduce handling costs
- Demotivating job functions are reduced
- Improve efficiency: manual and automatic All barcodes have "visual-readable-numbers".

Bar codes are placed on tubes in the following way: First, a white background is padprinted directly on the tube, then the lnk Jet technique is used to print the black codes on the white background. These codes can withstand the same temperature fluctuations that a Cryovial would in liquid nitrogen and the following defrosting.

Barcoded tubes are packaged in bags of 100. A label is placed on each bag indicating sequential numbering (ex. 100000 to 100099).

Alphanumeric printing is also available on many of our products. Contact Simport® for further details. A36B1 42263

Available Codes

We offer two different code types:

Code 128C

This is an alphanumerical code, meaning that it contains both numbers and characters/letters. Code 128C characters comprise three bars and three spaces. Code 128C is our recommended barcode of choice because of the compressed design, widely supported, flexibility and data security.

Interleaved 2 of 5

This code is numerical (no letters) and self-checking to improve the data security. Each Interleaved 2 of 5 character encodes two digits (one in the bars and one in the spaces) and therefore the code has a higher density. Interleave 2 of 5 always requires an equal number of characters (including check digit) to be printed. Due to the design of Interleaved 2 of 5 there is a risk of truncation of the sequence when scanned, which is why Simport® recommends a check digit and that a fixed number of digits mode is chosen in the reading software if possible.

New Products

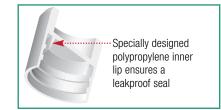


and many more!

T309

CRYOVIAL®

External Thread Design with Lip Seal


Made of specially formulated polypropylene

Designed for storing biological material, human or animal cells, at temperatures as low as -196 °C (but should be used only in the gas phase of liquid nitrogen). The cap features a long skirt for one hand aseptic methods, and a super fast thread design that allows tightening or removal with a mere 11/4 turn, and an inside thread design that will not contribute to possible contamination. A specially designed lip inside the cap ensures a leakproof seal even at very low temperatures. Closures and tubes are both made of polypropylene having the same coefficient of expansion, which further enhances the leakproof qualities of these vials at various temperatures. Tubes are provided with a white marking area for sample identification and can be color coded by the use of a CAPINSERTTM (Series T312). T309-2 can be centrifuged up to 17,000g. Vials are sterilized by gamma radiation and are packaged in unique tamperproof, resealable, safety-lock bags of 100. Autoclavable

Tubes on this page are certified RNase, DNase, Pyrogen and DNA-free

For IVD use

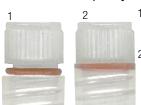
Cat. #	T309-1A	T309-2	T309-2A	T309-3A	T309-4A	T309-5A
Volume (ml)	1.2	2	2	3	4	5
Size (mm)	12.5 x 42	12.5 x 47	12.5 x 49	12.5 x 71	12.5 x 77	12.5 x 91
Self-Standing	•		•	•	•	•
Round Bottom		•				
Qty/Bag	100	100	100	100	100	100
Qty/Cs	1000	1000	1000	1000	1000	1000

- 1- A CAPINSERTTM is available in 11 different colors / Perfect for color coding (See T312 Series on page 98)
- 2- Vertical ribs facilitate cap removal
- 3- Both cap and tube are made of same polypropylene material, therefore same coefficient of expansion ensures secure seal at all temperatures
- 4- Super fast 1 1/4 turn thread design
- 5- Thick wall makes vial almost unbreakable
- 6- Large white marking area
- 7- Excellent clarity makes sample easy to see
- 8- Round bottom / Very easy to empty contents completely
- 9- Many sizes available as self-standing with universal locking base

T301

CRYOVIAL®

Internal Thread Design with Silicone O-ring Seal


Specially formulated polypropylene

Designed for safe storage at temperatures as low as -196 °C (but should be used only in the gas phase of liquid nitrogen). Only 1 ¹/₄ turn of the cap is sufficient to screw the cap on the vial. The specially formulated silicone o-ring ensures a positive leakproof seal at all temperatures. Closure and vial are both made of polypropylene having the same coefficient of expansion, ensuring an equally secure seal both at room temperature and at low cryogenic temperatures. Tubes have a white marking area, can be color coded with a CAPINSERT (Series T312) and are compatible with most storage systems. Only the non skirted vials can be centrifuged, and up to 17,000g. Sterilized by gamma radiation and packaged in unique tamperproof, resealable, safety-lock bags of 100. Autoclavable.

Tubes & caps on this page are certified RNase, DNase, Pyrogen and DNA-free

Feel the quality of your seal!

- A positive leakproof seal is enhanced by a specially designed silicone o-ring around the cap.
- As you tighten it, you can feel the quality of your seal while you compress the o-ring between the tube wall and the cap, creating a tight closure.

For IVD use C

Cat. #	T301-1	T301-2	T301-3	T301-4	T301-4A	T301-5
Volume (ml)	1.2	2	2	4	4	5
Size (mm)	12.5 x 41	12.5 x 49	12.5 x 48	12.5 x 70	12.5 x 72	12.5 x 90
Self-Standing	•	•			•	
Round Bottom	· ·					
Hourid Bottom			•	•		•
Qty/Bag	100	100	100	100	100	100

- 1- A CAPINSERTTM is available in 11 different colors Perfect for color coding (See T312 Series on page 98)
- 2- Vertical ribs facilitate cap removal
- 3- Super fast 1 1/4 turn thread design
- 4- Both cap and tube are made of same polypropylene material, therefore same coefficient of expansion ensures secure seal at all temperatures
- 5- Thick wall makes vial almost unbreakable
- 6- Large white marking area
- 7- Excellent clarity makes sample easy to see
- 8- Round bottom / Very easy to empty contents completely / Two sizes are self-standing with universal locking base

- 1- A CAPINSERTTM is available in 11 different colors / Perfect for color coding (See T312 Series on page 98)
- 2- Vertical ribs facilitate cap removal
- 3- Silicone washer
- 4- Super fast 1 1/4 turn thread design
- 5- Both cap and tube are made of same polypropylene material, therefore same coefficient of expansion ensures secure seal at all temperatures
- 6- Thick wall makes vial almost unbreakable
- 7- Large white marking area
- 8- Excellent clarity makes sample easy to see
- 9- Round bottom / Very easy to empty contents completely

For IVD use

T311

CRYOVIAL®

Internal Thread Design with Silicone Washer Seal

Specially formulated polypropylene

Designed for storing biological material, human or animal cells, at temperatures as low as -196 °C (but should be used only in the gas phase of liquid nitrogen). A silicone washer between cap and vial ensures a positive leakproof seal at all temperatures. A 1 ½ turn of the cap is sufficient to seal the vial. Closure and vials are both manufactured of polypropylene with the same coefficient of expansion, ensuring an equally secure seal both at room temperature and at low cryogenic temperatures. Tubes have a white marking area, can be color coded with a CAPINSERTTM (Series T312) and are compatible with most storage systems. Only the round bottom vials can be centrifuged, and up to 17,000g. Sterilized by gamma radiation and packaged in unique tamperproof, resealable, safety-lock bags of 100. Autoclavable.

 This cap offers a positive seal using a white silicone washer.

When the cap is screwed on, the white washer is tightly secured between cap and top of tube. Tubes & caps on this page are certified RNase, DNase, Pyrogen and DNA-free

Cat. #	T311-1	T311-2	T311-3	T311-4	T311-4A	T311-5
Volume (ml)	1.2	2	2	4	4	5
Size (mm)	12.5 x 41	12.5 x 49	12.5 x 48	12.5 x 70	12.5 x 72	12.5 x 90
Self-Standing	•	•			•	
Round Bottom			•	•		•
Qty/Bag	100	100	100	100	100	100
Qty/Cs	1000	1000	1000	1000	1000	1000

T308 CRYOVIAL®

External Thread Design with Lip and Silicone Washer Seal

Made of specially formulated polypropylene

Designed for the storage of biological material, human or animal cells, at temperatures as low as -196 °C (but should be used only in the gas phase of liquid nitrogen). The cap features a long skirt for easy one-handed aseptic technique, a super fast thread design allowing removal with only 1½ turn, and an inside thread design that will not contribute to possible contamination. This cap also features an exclusive silicone washer fitted inside the cap to ensure a positive seal at any temperature, even the lowest of cryogenic temperatures. The tubes are provided with a white marking area for sample identification and can be color coded by the use of a CAPINSERTTM (Series T312 for choice of available colors). T308-2 can be centrifuged up to 17,000g. Vials are sterilized by gamma radiation and are packaged in unique tamperproof, resealable safety-lock bags of 100. Autoclavable

Tubes & caps on this page are certified RNase, DNase, Pyrogen and DNA-free

For IVD use

Cat. #	T308-1A	T308-2	T308-2A	T308-3A	T308-4A	T308-5A
Volume (ml)	1.2	2	2	3	4	5
Size (mm)	12.5 x 42	12.5 x 47	12.5 x 49	12.5 x 71	12.5 x 77	12.5 x 91
Self-Standing	•		•	•	•	•
Round Bottom		•				
Qty/Bag	100	100	100	100	100	100
Qty/Cs	1000	1000	1000	1000	1000	1000

- 1- A CAPINSERTTM is available in 11 different colors / Perfect for color coding (See T312 Series on page 98)
- 2- Vertical ribs facilitate cap removal
- 3- Both cap and tube are made of same polypropylene material, therefore same coefficient of expansion ensures secure seal at all temperatures
- 4- Super fast 1 1/4 turn thread design
- 5- Thick wall makes vial almost unbreakable
- 6- Large white marking area
- 7- Excellent clarity makes sample easy to see
- 8- Round bottom / Very easy to empty contents completely
- 9- Many sizes available as self-standing with universal locking base

T310 **CRYOVIAL®**

95kPa TESTED

External Thread Design with Silicone Washer Seal

Made of specially formulated polypropylene

Designed for storing biological material, human or animal cells, at temperatures as low as -196 °C (but should be used only in the gas phase of liquid nitrogen). The cap features a long skirt for easy one hand aseptic methods, the same super fast thread design allowing it to be removed or sealed with a mere 11/4 turn, and the same inside thread design that will not contribute to possible contamination. But this cap also features an exclusive silicone seal fitted inside the cap to ensure a positive seal at any temperature, even the lowest of cryogenic temperatures. Please note that model T310-10A has a polyethylene screw cap. Tubes are provided with a white marking area for sample identification and can be color coded by the use of a CAPINSERT™ (Series T312). The Simport® CRYOVIAL® is compatible with most storage systems. T310-2 can be centrifuged up to 17,000g. Vials are sterilized by gamma radiation and are packaged in unique tamperproof, resealable, safety-lock bags of 100. Autoclavable.

Tubes & caps on this page are certified RNase, DNase, Pyrogen and DNA-free

A 10 ML SIZE

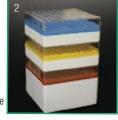
leakproof seal

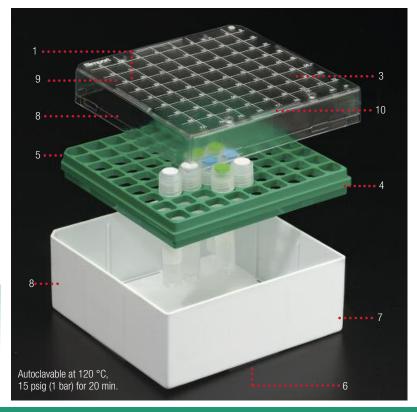
- A CAPINSERT™ is available in 11 different colors / Perfect for color coding (See T312 on page 98)
- 2-Vertical ribs facilitate cap removal
- Silicone washer
- Both cap and tube are made of same polypropylene material, therefore same coefficient of expansion ensures secure seal at all temperatures
- Super fast 1 1/4 turn thread design
- Thick wall makes vial almost unbreakable
- Large white marking area
- Excellent clarity makes sample easy to see 8-
- Round bottom / Very easy to empty contents completely
- 10- Many sizes available as self-standing with universal locking base

Cat. #	T310-1A	T310-2	T310-2A	T310-3A	T310-4A	T310-5A	T310-10A
Volume (ml)	1.2	2	2	3	4	5	10
Size (mm)	12.5 x 42	12.5 x 47	12.5 x 49	12.5 x 71	12.5 x 77	12.5 x 91	17 X 84
Self-Standing	•		•	•	•	•	•
Round Bottom		•					
Qty/Bag	100	100	100	100	100	100	50
Qtv/Cs	1000	1000	1000	1000	1000	1000	500

STORAGE BOXES

Storage Box on this page are certified RNase, DNase, Pyrogen and DNA-free


Features and benefits of 25- and 81-Place CRYOSTORE™ Storage Boxes


- 1- Writing surface has numbered squares for easy sample identification
- 2- Stackable
- 3- Vials readily visible through transparent cover
- 4- Four colors available for better color-coding
- 5- Cover and base are keyed to prevent misalignment
- 6- Drain holes under base
- 7- Made to fit freezer metal racks
- 8- Writing surface for identifying base and/or cover
- 9- Numeric identification of each vial
- 10- Air vents minimizing condensation

A Vial Picker is included with each StoreBox™.

All CRYOSTORE™ Storage Boxes are easily stackable.

STORAGE BOXES

T314-542

CRYOSTORETM Storage Box

Made of polycarbonate

Made of extra strong polycarbonate, these durable cryogenic storage boxes are designed to be used at temperatures between -196 °C and +121 °C and are autoclavable at 120 °C, 15 psig (1 bar) for 20 minutes. Different colors are available to accommodate 42 x T310-10A cryogenic tubes.

A transparent cover allows the user to see the contents of the box, and is keyed to the base to prevent misalignment. Printed with a series of squares numbered from 1 to 42, the surface accepts writing with markers, facilitating inventory control.

A unique color coding system uses colored plastic grids to separate the cover from the base on the box. A choice of four popular colors is available.

Series 225: Size: 76 mm x 76 mm x 52 mm H (3 x 3 x 2 1/16 in. H)

		(-	,	
Cat. #	For cryogenic tubes	Color of grid	Qty/Pk	Qty/Cs
T314-225B	1 to 2 ml	Blue	8	48
T314-225G	1 to 2 ml	Green	8	48
T314-225R	1 to 2 ml	Red	8	48
T314-225Y	1 to 2 ml	Yellow	8	48

Series 542: Size: 133 mm x 133 mm x 95 mm H (5 1/4 x 5 1/4 x 3 3/4 in. H)

Cat. #	For cryogenic tubes	Color of grid	Qty/Pk	Qty/Cs
T314-542B	10 ml	Blue	5	10
T314-542G	10 ml	Green	5	10
T314-542R	10 ml	Red	5	10
T314-542Y	10 ml	Yellow	5	10

Series 281: Size: 133 mm x 133 mm x 52 mm H (5 1/4 x 5 1/4 x 2 1/16 in. H)

Cat. #	For cryogenic tubes	Color of grid	Qty/Pk	Qty/Cs
T314-281B	1 to 2 ml	Blue	4	24
T314-281G	1 to 2 ml	Green	4	24
T314-281R	1 to 2 ml	Red	4	24
T314-281Y	1 to 2 ml	Yellow	4	24

Series 581: Size:	133 mm x	133 mm x 9	5 mm H (5	5 ¹ /4 x 5 ¹ /4	x 3 3/4 in. H
-------------------	----------	------------	-----------	---------------------------------------	---------------

Cat. #	For cryogenic tubes	Color of grid	Qty/Pk	Qty/Cs
T314-581B	3 to 5 ml	Blue	5	10
T314-581G	3 to 5 ml	Green	5	10
T314-581R	3 to 5 ml	Red	5	10
T314-581Y	3 to 5 ml	Yellow	5	10

Series 481: Size:	133 mm x	133 mm x 81	mm H (5	'/4 X 5 '/4 I	X 3 78 In. H)

Cat. #	For cryogenic tubes	Color of grid	Qty/Pk	Qty/Cs
T314-481B	3 to 4 ml	Blue	3	12
T314-481G	3 to 4 ml	Green	3	12
T314-481R	3 to 4 ml	Red	3	12
T314-481Y	3 to 4 ml	Yellow	3	12

Series 2100: Size: 133 mm x 133 mm x 52 mm H (5 1/4 x 5 1/4 x 2 1/16 in. H)

Cat. #	For cryogenic tubes*	Color of grid	Qty/Pk	Qty/Cs
T314-2100B	1 to 2 ml	Blue	4	24
T314-2100G	1 to 2 ml	Green	4	24
T314-2100R	1 to 2 ml	Red	4	24
T314-2100Y	1 to 2 ml	Yellow	4	24
* T201 and T211 C	'orion only			

T301 and T311 Series only

A picture is worth a thousand words. A sample, a thousand pictures...

You might look at a picture and read the words under it a thousand times, nothing beats having the product in your own hands for evaluation.

Simport® is proud to offer you the most comprehensive sample program ever developed in the industry. Just for the asking, you can get free of charge a sample of any Simport® product along with a specially designed card describing all the features, benefits and ordering information.

Cryostore™ Storage

Cryostore™ Storage Box Selection Guide					The Transfer for The	Tuming anadama III	- Manten harten harten harten har				(Jungaluturi	Innulan minul	Tenganhadanhadanhan	11年には日本の日本の	
ect		1.2 ml	2-808-5 El	2 T308-2A <u>≡</u>	æ T308-3A	4 T308-4A	± T308-5A	1.2 ml	z 1310-2 <u>≡</u>	2 T310-2A <u>≡</u>	8 T310-3A	H T310-4A	G T310-5A	10 T310-10A	
S XC	T314-225	•	•	•				•	•	•					
je Ba	T314-281	•	•	•				•	•	•					
toraç	T314-481				•	•					•	•			
© MTM	T314-542													•	
stor	T314-581				•	•					•	•	•		
Cryo	T314-2100														

Box Selection Guide

	Tuninul III		(A) James France (1981)	Turranhannahan	Leading the state of the state		Internal International Property of the Propert	Transferration (1)	C Transachamandaming [1]	Junandinaminan III	M. D. Bustonia and Bustonia and D. D. Bustonia and D. D. Bustonia and D. Busto		The state of the s	Triumining .	Transmittenming (NO)	January Manuary Man	
T309-1A	T309-2	T309-2A	T309-3A	T309-4A	T309-5A	T301-1	T301-2	T301-3	T301-4	T301-4A	T301-5	T311-1	T311-2	T311-3	T311-4	T311-4A	T311-5
1.2 ml	2 ml	2 ml	3 ml	4 ml		1.2 ml	2 ml	2 ml	4 ml	4 ml	5 ml	1.2 ml	2 ml	2 ml	4 ml	4 ml	5 ml
•	•	•				•	•	•				•	•	•			
•	•	•				•	•	•				•	•	•			
			•	•					•	•					•	•	
			•	•	•						•						•
						•	•	•				•	•	•			

T312

CAPINSERTTM for **CRYOVIAL**® Tubes

Made of polypropylene

Color coded inserts fit precisely into the cap of the Cryovial® for color identification.

Cat. #	Color	Qty/Bag	Cat. #	Color	Qty/Bag
T312-1	White	500	T312-8	Tan	500
T312-2	Blue	500	T312-9	Gray	500
T312-3	Red	500	T312-10	Lilac	500
T312-4	Green	500	T312-11	Burnt orange	500
T312-5	Yellow	500	T312-13	Violet	500
T312-7	Assortment of colors above	5 bags of 100	T312-14	Pink	500

T313

Cane for CRYOVIAL® Tubes

Made of aluminum

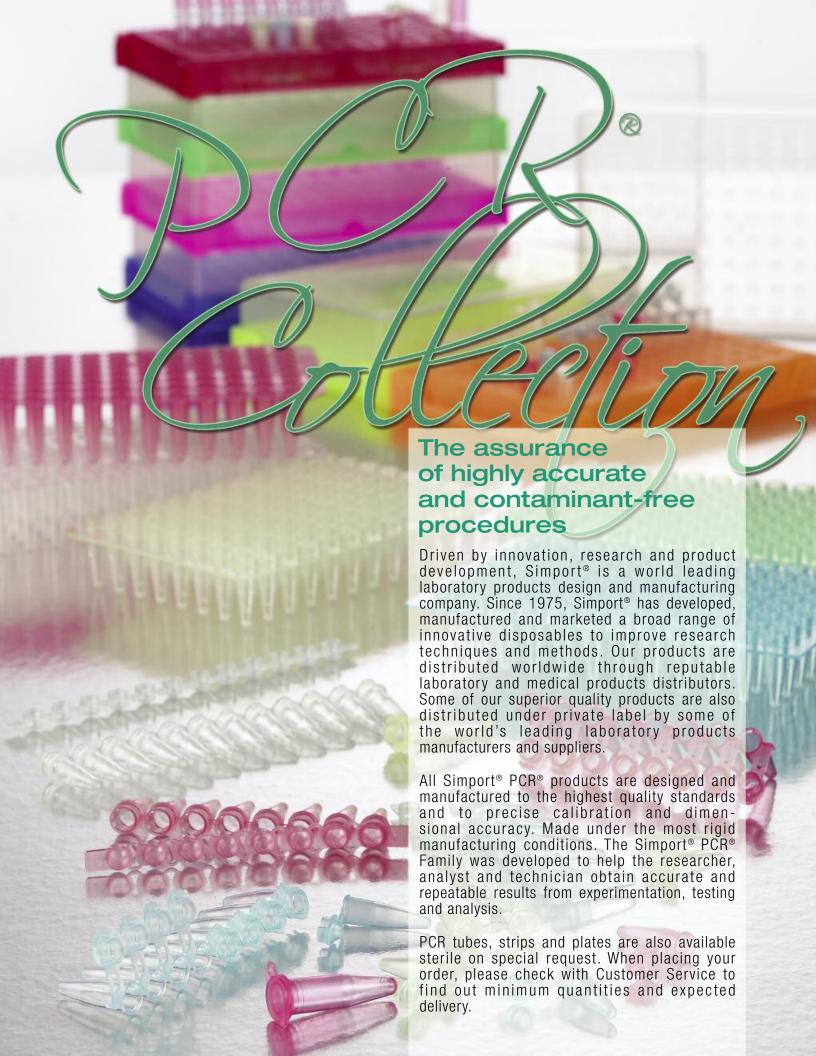
For storage of up to five 1.2 or 2 ml Simport® Cryovial® tubes in liquid nitrogen containers such as Dewar flasks.

Cat. #	Length	Qty/Pk	Qty/Cs
T313	290 mm (11 ⁵ / ₁₆ in.)	12	48

LOSED POSTON

Now, with only one hand, you can easily unscrew a Simport® Cryovial® closure. Thanks to an innovative universal locking base, the vials will securely lock in the wells of just about any rack on the market. This newly designed feature is available on all Simport® self-standing Cryovial® tubes.

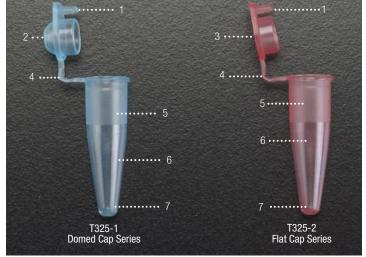
T315


CRYOVIAL® Workstation Rack

Made of polypropylene

This handy autoclavable rack can hold up to 50 cryogenic vials. Now with one hand, you can easily unscrew a Simport® Cryovial® closure. Thanks to an innovative universal locking system, the vials will securely lock in each well and will not turn. Each position is identified with an alphanumeric index. Strong handles make it easy and safe to carry. It is supported by anti-skid rubber feet. The rack is compact and stackable. Available in three attractive colors.

Size: 10 cm x 20 cm x 25 mm H (4 x 8 x 1 in. H)


Cat. #	Color	Qty/Cs
T315-2	Blue	4
T315-3	Red	4
T315-10	Lilac	4

The cap has an integral shield preventing contamination with surface of lid.

T325-1 & -2 **AMPLITUBETM** PCR Reaction Tubes, 0.2 ml

Made of polypropylene

Designed for oil-free operation, these tubes are made of transparent superior quality grade polypropylene for better viewing of the contents. Their ultrathin wall design will ensure rapid thermal transfer and a significant reduction in cycle and PCR reaction time.

Attached hinged caps are either dome or flat-topped and can be used with heated lids used by thermal cycler manufacturers. They provide positive sealing during thermal cycling and will prevent evaporation while being easily opened and closed with one hand. The cap has an integral shield preventing contamination with surface of lid. Frosted writing surface for sample identification.

Choice of colorless and four non-cytotoxic and non-metallic colors. Packaged in tamperproof resealable safety-lock bags.

Cat. # Domed Cap	Cat. # Flat Cap	Color	Qty/Pk
T325-1N	T325-2N	Natural	1000
T325-1B	T325-2B	blue	1000
T325-1G	T325-2G	Green	1000
T325-1R	T325-2R	Red	1000
T325-1Y	T325-2Y	Yellow	1000

- Integral shield prevents contamination with surface of lid
- Domed cap provides a snap shut positive seal
- Pierceable flat cap
- 4 Attached cap allows opening and closing with one hand
- Frosted writing surface
- Ultrathin wall ensures excellent thermal exchange
- Round bottom makes tube easy to empty

Tubes on this page are certified RNase, DNase, Pyrogen and DNA-free

T325-1V & -2V **AMPLITUBE**TM PCR Reaction Tubes, 0.2 ml

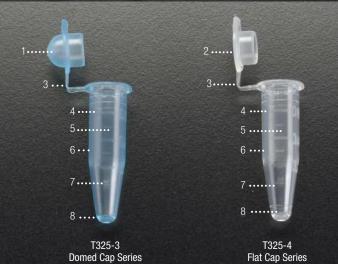
Made of polypropylene

Ideal tube design when centrifugation is necessary. These tubes are identical to the T325-1 & -2 Series but without a contamination shield. Frosted writing surface for sample identification. See description above for further details. Packaged in tamperproof resealable safety-lock bags.

Cat. # Domed Cap	Cat. # Flat Cap	Color	Qty/Pk
T325-1VN	T325-2VN	Natural	1000
T325-1VB	T325-2VB	Blue	1000
T325-1VG	T325-2VG	Green	1000
T325-1VR	T325-2VR	Red	1000
T325-1VY	T325-2VY	Yellow	1000

T325-12

AMPLITUBETM


PCR Reaction Tubes 0.2 ml (without cap)

Made of polypropylene

This thin wall 0.2 ml tube is very useful when processing smaller volumes. It offers optimum contact with thermal cycler blocks. The ultrathin wall will ensure rapid thermal transfer and a significant reduction in cycle and PCR reaction time. Specially designed with a highly polished surface and a round bottom for maximum sample recovery. Sealing can be achieved by using either T321-1 or T321-2 Series Cap Strips. Choice of colorless and four non-cytotoxic and non-metallic colors. Packed in tamperproof resealable bags.

Cat. #	Color	Qty/Pk
T325-12N	Natural	1000
T325-12B	Blue	1000
T325-12G	Green	1000
T325-12R	Red	1000
T325-12Y	Yellow	1000

T325-3 & -4

AMPLITUBE™ PCR Reaction Tubes, 0.5 ml

Made of polypropylene

Also designed for oil-free operation, the inside of these tubes has a polished surface, a conical shape and a round bottom for maximum sample recovery. They offer optimum contact with thermal cycler blocks. Their ultrathin wall design will ensure rapid thermal transfer and a significant reduction in cycle and PCR reaction time. Graduated in 0.1 ml increments.

Attached hinged caps are either dome or flat-topped and provide positive sealing during thermal cycling stages. They will prevent evaporation while being easily opened and closed with one hand. Choice of colorless and four non-cytotoxic and non-metallic colors for visual coding of samples. Packed in tamperproof resealable bags. Autoclavable.

- 1 Domed cap provides a snap shut positive seal
- 2 Pierceable flat cap
- 3 Attached cap allows opening and closing with one hand
- 4 Etched writing surface for sample identification
- 5 Graduated in 0.1 ml increments
- 6 Ultrathin wall
- 7 See-thru polypropylene
- 8 Round bottom makes tube easy to empty

Tubes on this page are certified RNase, DNase, Pyrogen and DNA-free

Cat. # Domed Cap	Cat. # Flat Cap	Color	Qty/Pk
T325-3N	T325-4N	Natural	1000
T325-3B	T325-4B	Blue	1000
T325-3G	T325-4G	Green	1000
T325-3R	T325-4R	Red	1000
T325-3Y	T325-4Y	Yellow	1000

Three versatile racks to accommodate your PCR tubes, strips and plates.

Made of polypropylene

Simport® Reaction Strips include 8 or 12 integral 0.2 ml tubes with ultrathin sidewalls and bottoms for more uniform and efficient temperature transfer, therefore reducing PCR reaction time in most 96-well "V" bottomed thermal cyclers such as MJ Research, Perkin Elmer, Hybaid and others.

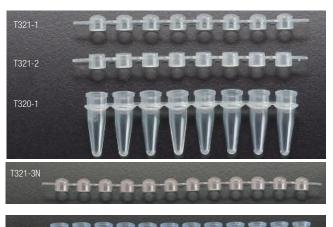
They are more easily handled than single tubes. They will precisely fit standard well spacing and can also be used with 8- and 12-channel hand-held pipettors. All strips are molded of polypropylene under the most stringent conditions and are offered, colorless and in four different colors.

Non-attached cap strips are available in a dome or flat top design and ensure a perfect closure during the whole thermal cycle. Cap strips are not included and have to be ordered separately (see T321 Series). Packed in tamperproof resealable bags.

The T321-2 h lear hand in polurface for resample of the control of

Natural flat cap strips in series T321-2 have a super clear highly polished upper surface for real time qPCR applications and fluorescence detection.

Tubes on this page are certified RNase, DNase, Pyrogen and DNA-free


TUBE & CAP STRIPS OF 8

Cat. #Tube Strip	Cat. # Domed Cap	Cat. # Flat Cap	Color	Qty/Pk
T320-1N	T321-1N	T321-2N	Natural	125
T320-1B	T321-1B	T321-2B	Blue	125
T320-1G	T321-1G	T321-2G	Green	125
T320-1R	T321-1R	T321-2R	Red	125
T320-1Y	T321-1Y	T321-2Y	Yellow	125

TUBE & CAP STRIPS OF 12

Cat. # Tube Strip	Cat. # Domed Cap	Color	Qty/Pk
T320-10N	T321-3N	Natural	125
T320-10B*		Blue	125
T320-10G*		Green	125
T320-10R*		Red	125
T320-10Y*		Yellow	125

Available on request only. Minimum quantities apply. Please enquire for more details.

Made of polypropylene

This more convenient 0.2 ml tube strip incorporates individually attached caps. No need to carry two separate components in inventory. The strip includes 8 integral 0.2 ml tubes with ultrathin sidewalls and bottoms for more uniform and efficient temperature transfer.

This PCR reaction strip is available with either flat (needle pierceable) or dome-topped individually attached hinged caps. While easily opened and closed with one hand, their positive sealing will fully protect the contents from evaporation during the whole thermal cycle. The cap has an integral seal preventing contamination with surface of

While more easily handled than single tubes, the strip will precisely fit standard well spacing and can also be used with 8-channel hand-held pipettors. Manufactured under the most stringent conditions to attain the highest quality standards in the industry. Choice of colorless and four non-cytotoxic and non-metallic colors. Packed in tamperproof resealable bags.

Cat.#	Type of Cap	Cat.#	Type of Cap	Color	Qty/Pk
T320-2N	Flat	T320-3N	Domed	Natural	125
T320-2B	Flat	T320-3B	Domed	Blue	125
T320-2G	Flat	T320-3G	Domed	Green	125
T320-2R	Flat	T320-3R	Domed	Red	125
T320-2Y	Flat	T320-3Y	Domed	Yellow	125

T320-2LPN Low Profile **AMPLITUBE™** PCR Reaction Strip

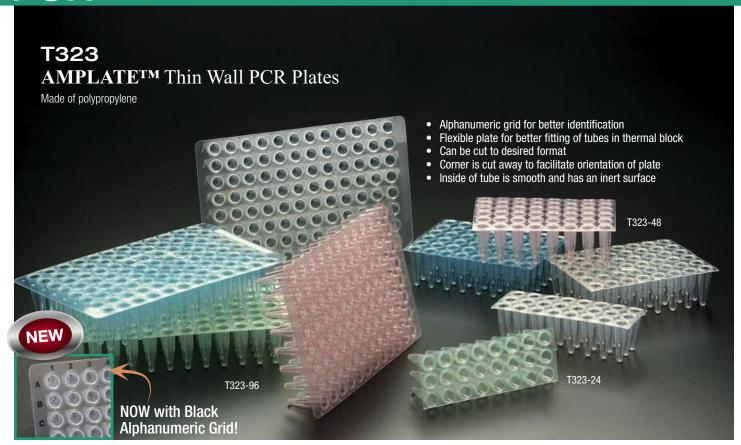
Made of polypropylene

This flat cap low profile model has a volume of only 100 µl per tube, for a total of 8 tubes.

Cat.#	Type of Cap	Color	Qty/Pk
T320-2LPN	Flat	Natural	125

AMPLITUBE™ Thin Wall PCR Reaction Strips

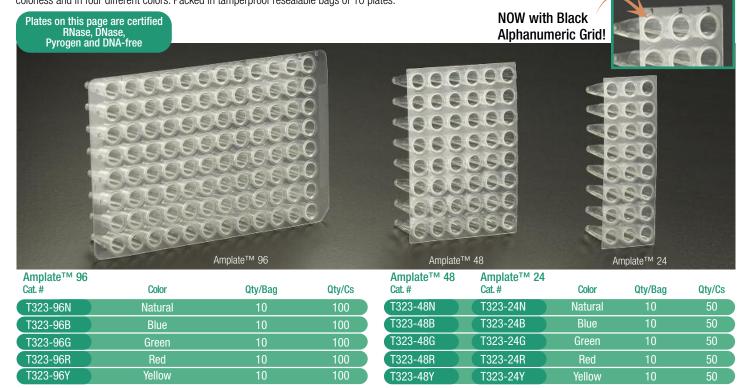
(Cap Strip attached)


Made of polypropylene

These reaction strips are identical to T320 Series but include already attached 8-cap strips molded with a living hinge to facilitate opening and closing. They are manufactured under strict quality control supervision to ensure reproducible results, using a special almost transparent polypropylene.

Individual tube sealing ensures that samples are well protected from any carry-over contamination. The domed cap design offers a snap shut seal to avoid evaporation during thermal cycling stages. Packed in tamperproof resealable bags.

Cat. #	Color	Qty/Pk
T322-1N	Natural	125
T322-1B	Blue	125
T322-1G	Green	125
T322-1R	Red	125
T322-1Y	Yellow	125


These 96-well PCR plates are thin-walled and designed for rapid thermal transfer. Each well has a capacity of 0.2 ml. They are precision-molded to ensure well-to-well and plate-to-plate uniformity. The insides of the tubes are smooth and have an inert surface on which enzymes and nucleic acids do not bind.

All sealing methods can be used for oil-free operation:

SecureSealTM Thermal sealing film and foil (T329 Series), and AmplateTM Mat (T329-10). Suitable to be used with all 96-well shaped cyclers. Their flexible design allows them to be easily cut into sections of 24, 32 or 48 tubes.

The plates will accommodate differences in expansion coefficients between the metal thermal cycler block and polypropylene tubes. For more convenience, pre-cut plates are also available in the following formats: $48 \text{ tubes } (6 \times 8)$ and $24 \text{ tubes } (3 \times 8)$.

On the 96-well plate, a printed black alphanumeric grid helps sample identification. To facilitate orientation, the bottom right corner of the plate is cut away. The AMPLATETM is easy to seal since no cylindrical walls extend above the plate. More economical than using single tubes, it is available colorless and in four different colors. Packed in tamperproof resealable bags of 10 plates.

T323-96LP

Low Profile AMPLATETM 96 Thin Wall PCR Plates

Made of polypropylene

These low profile 96-well PCR plates are similar to the regular Simport® AMPLATE™ Series detailed on the previous page. However, each of the 96 tubes has a smaller volume (only 100 µl) and thereby reduce the dead space between sample and cover.

They are thin-walled and designed for rapid thermal transfer, precisionmolded to ensure well-to-well and plate-to-plate uniformity. All sealing methods can be used for oil-free operation: domed and flat cap strips (T321 Series), SecureSeal™ Thermal sealing film and foil (T329 Series), and Amplate Mat (T329-10). Suitable to be used with all 96-well shaped cyclers.

The flexible design accommodates differences in expansion coefficients between the metal thermal cycler block and polypropylene tubes.

A printed black alphanumeric grid helps sample identification. To facilitate orientation, corner at A1 of the plate is cut away. The AMPLATE™ is easy to seal since no cylindrical walls extend above the plate. More economical than using single tubes, it is available colorless and in four different colors.

Packed in tamperproof resealable bags of 10 plates.

CAN BE USED WITH ALL LEADING THERMAL CYCLERS

Plates on this page are certified RNase, DNase, Pyrogen and DNA-free

Well volume is only 10	00 μI	
	NOW with Black Alphanumeric Gri	d!

- · Alphanumeric grid for better identification
- · Flat surface for better sealing
- · Small volume reducing dead space between sample and cover

Cat.#	Color	Qty/Bag	Qty/Cs
T323-96LPN	Natural	10	100
T323-96LPB*	Blue	10	100
T323-96LPG*	Green	10	100
T323-96LPR*	Red	10	100
T323-96LPY*	Yellow	10	100

Minimum quantity applicable. Please contact one of our customer service agents for further details.

T323-96SK Skirted AMPLATETM 96

Thin Wall PCR Plates

Made of polypropylene

Similar to the T323 Series above, these skirted 96-well PCR plates are thinwalled and designed for rapid thermal transfer. The skirt around the plate provides a bar coding and labeling area, unavailable in other types of plates. They are precision-molded to ensure well-to-well and plate-toplate uniformity. Quite superior to polycarbonate plates, they are impermeable to water vapor.

All sealing methods can be used for oil-free operation: domed and flat cap strips (T321 Series), SecureSeal™ Thermal sealing film and foil (T329), and Amplate™ Mat (T329-10 Series). Suitable to be used with all 96-well shaped cyclers.

An alphanumeric grid helps sample identification. To facilitate orientation, corner at H1 of the plate is cut away. The AMPLATE™ is easy to seal since no cylindrical walls extend above the plate. More economical than using single tubes, it is available colorless and in four different colors.

Finally, the Simport® AMPLATE™ can be handled by robotic handling equipment and is ideal with automated pipetting systems.

Packed in tamperproof resealable bags of 10 plates.

- Alphanumeric grid for better identification
- Flat surface for better sealing
- Can be handled by robotic handling equipment
- Area for bar coding, labeling or writing on each side and top
- Each well has a volume of 100 µl

Cat.#	Color	Qty/Bag	Qty/Cs
T323-96SKN	Natural	10	100
T323-96SKB*	Blue	10	100
T323-96SKG*	Green	10	100
T323-96SKR*	Red	10	100
T323-96SKY*	Yellow	10	100

^{*} Minimum quantity applicable. Please contact one of our customer service agents for further details.

Made of polypropylene

Amplate™ Raised Rim thin wall PCR plates are the latest addition to the wide range of Simport® PCR products. Offering just the right rigidity for automation, these four 96-well plates, made in a standard 8 x 12 configuration, are perfectly suited for high performance thermal cycling. Each well makes intimate contact with the heating block while quick and consistent heat transfer is ensured by a uniform wall thickness. Using a special polypropylene, samples are easily recovered thanks to a low adhesion surface.

Well capacity: T323-100 and -101 Series: 250 µl, T323-103 Series: 200 μL, T323-104: 100 μL.

These plates offer the right alternative to existing Robbins (-100), Corning (-101), Perkin Elmer (-103) and ABI (-104) models. T323-100 and -101 Series have a 3 mm raised rim around each tube well.

T323-101 is supplied with a wide skirt extending over and under the plate on which a bar code can be affixed to facilitate identification. T323-103 and T323-104 will also offer the same skirt but the rim above each tube well is only 1 mm high.

All sealing methods can be used for oil-free operation: domed and flat cap strips (T321 Series); SecureSeal™ Thermal Sealing Film (T329-1); SecureSeal™ Aluminium Sealing Foil (T329-5) and AmplateTM Mat (T329-10). To facilitate orientation, one corner of the plate is cut away. An alphanumeric grid helps sample identification. Packed in tamperproof resealable bags of ten plates.

Cat. #

T323-100N	Natural	10	100
T323-100B*	Blue	10	100
T323-100G*	Green	10	100
T323-100R*	Red	10	100
T323-100Y*	Yellow	10	100
Cat. #	Color	Qty/Bag	Qty/Cs
T323-101N	Natural	10	100
T323-101B*	Blue	10	100
T323-101G*	Green	10	100
T323-101R*	Red	10	100
T323-101Y*	Yellow	10	100
Cat. #	Color	Qty/Bag	Qty/Cs
T323-103N	Natural	10	100
T323-103B*	Blue	10	100
T323-103G*	Green	10	100
T323-103R*	Red	10	100
T323-103Y*	Yellow	10	100

Color

Qty/Bag

Qty/Cs

*Minimum quantity applicable. Please contact one of our customer service agents for further details

Semi Skirted AMPLATE™ Thin Wall PCR Plate

This plate is a perfect alternative to the Applied Biosystems MicroAmp® Fast 96-Well Reaction Plate, 0.1 ml, reducing PCR reaction time from 2 hours to as little as 25 minutes.

T323-384SK **AMPLATE™** 384 Thin Wall PCR Plates

Made of polypropylene

This plate has been developed for high volume laboratory work. It is precision-molded to ensure well-to-well and plate-to-plate uniformity.

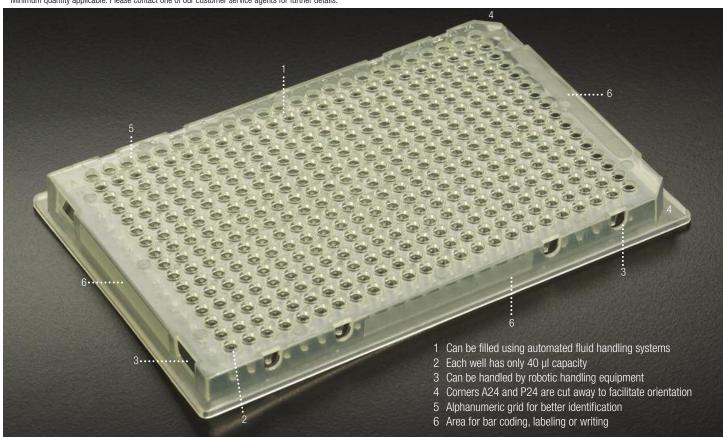
The design of the AMPLATETM 384 is such that each well having a 40 μ l capacity can be used with reaction volumes from 2 to 30 μ l. All wells on the plate are thin-walled to make sure that an efficient and fast heat transfer is occurring.

> Although it has 384 wells, it can be filled using automated fluid handling systems or standard multichannel pipettors.

In order to offer more surface contact between the plate and the sealing medium, such as thermal foil and adhesive sealing films, there are no cylindrical walls extending above the plate.

The AMPLATE™ 384 is skirted to allow bar coding on sides for identification and also to make it compatible with automated fluid handling systems. Holes on sides allow for precise and accurate plate positioning and removal.

An alphanumeric grid helps in locating the sample. Two corners of the plate are cut away to facilitate orientation.


The AMPLATETM 384 is definitely more economical than using single tubes, strips, and even 96-well plates. It is available colorless and in four popular colors. Packed in tamperproof resealable bags of 10 plates.

Cat.#	Color	Qty/Bag	Qty/Cs
T323-384SKN	Natural	10	100
T323-384SKB*	Blue	10	100
T323-384SKG*	Green	10	100
T323-384SKR*	Red	10	100
T323-384SKY*	Yellow	10	100

*Minimum quantity applicable. Please contact one of our customer service agents for further details.

Plates on this page are certified RNase, DNase, Pyrogen and DNA-free

- 1 Alphanumeric grid for better identification
- 2 Area for bar coding, labeling or writing
- 3 Can be handled by robotic handling equipment
- 4 One corner is cut away to facilitate orientation
- 5 Flat surface of wells for better sealing
- Opaque to ensure low level of background fluorescence

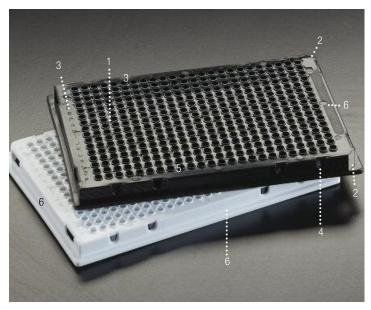
T324-96SK

Opaque Skirted AMPLATETM 96 Thin Wall PCR Plates

Made of polypropylene

These opaque 96-well PCR plates are for chemiluminescent and fluorescent procedures. Each well has a capacity of 100 µl. Thin-walled and designed for rapid thermal transfer. They are precision-molded to ensure well-to-well and plate-to-plate uniformity.

All sealing methods can be used for oil-free operation: domed and flat cap strips (T321 Series), SecureSeal™Thermal and foil (T329 Series), and Amplate™ Mat (T329-10). Suitable to be used with all 96-well shaped cyclers.


An alphanumeric grid helps in sample identification. To facilitate orientation, corner at H1 of the plate is cut away. The AMPLATE™ is easy to seal since no cylindrical walls extend above the plate. Finally, the Simport® AMPLATE™ can be handled by robotic handling equipment and is ideal with automated pipetting systems.

Packed in tamperproof resealable bags of 10 plates.

Cat. #	Color	Qty/Bag	Qty/Cs
T324-96SKK	Black	10	100
T324-96SKW	White	10	100

Plates on this page are certified RNase, DNase, Pyrogen and DNA-free

- Can be filled using automated fluid handling systems
- Two corners are cut away to facilitate orientation
- 3 Alphanumeric grid for better identification
- 4 Can be handled by robotic handling equipment
- Opaque to ensure low level of background fluorescence
- 6 Area for bar coding, labeling or writing

T324-384SK

Opaque Skirted AMPLATETM 384 Thin Wall PCR Plates

Made of polypropylene

For chemiluminescent and fluorescent procedures, the AMPLATE™ -384 is available in opaque white or black. The white plate will increase signal output in both types of assays. It has been developed for high volume laboratory work. It is precision-molded to ensure well-to-well and plate-to-plate uniformity.

The design of the AMPLATE™ -384 is such that each well having a 40 µl capacity can be used with reaction volumes from 2 to 30 µl capacity. Only virgin polypropylene is used to manufacture this plate. Although it has 384 wells, it can be filled using automated fluid handling systems or standard multichannel pipettors. All wells on the plate are thin-walled to make sure that an efficient and fast heat transfer is occurring.

In order to offer more surface contact between the plate and the sealing medium, such as thermal foil and adhesive sealing films, there are no cylindrical walls extending above the plate.

The AMPLATE™ -384 is skirted to allow bar coding on sides for identification and also to make it compatible with automated fluid handling systems. Holes on sides allow for precise and accurate plate positioning and removal.

An alphanumeric grid helps in locating the sample. Two corners of the plate are cut away to facilitate orientation.

Packed in tamperproof resealable bags of 10 plates.

Cat.#	Color	Qty/Bag	Qty/Cs
T324-384SKK	Black	10	100
T324-384SKW	White	10	100

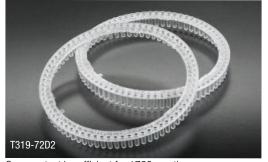
T319-4N

RotoCycler™ 0.1 ml Tube and Cap Strips for Qiagen Rotor-Gene™ Q Real-Time Rotary Analyzer

Made of polypropylene

The Rotor-Gene™ analyzer was formerly designed by Corbett. These RotoCycler™ strips are perfectly designed to perform on Rotor-Gene™ instruments. Tube strips are packaged separately from cap strips. The frosted extensions on caps not only make them more efficient and secure during handling but also offer a convenient area for labelling. For individual use, tube and cap strips can easily be separated and used as individual units. Each package contains four bags of 250 tube strips and four bags of 250 cap strips. Case content is sufficient for 4000 reactions.

Cat.#	Description	Qty/Pk	Qty/Cs
T319-4N	Tube and Cap Strips, 0.1 ml	250	1000



T319-72D2 and -100D1

RotoCyclerTM Discs for Qiagen Rotor-GeneTM Q Real-Time Rotary Analyzer

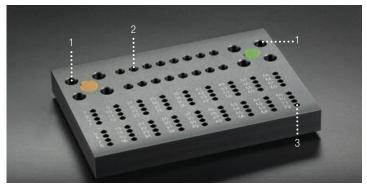
Made of polypropylene

The RotoCycler™ Discs are specially made to be used with the Qiagen Rotor-Gene™ Q Real-Time Rotary Analyzer. Two models are available: a 72-well format with 100 µL tubes and a 100-well format for reactions up to 25 µL. The discs are a one-piece "plate" equivalent, having vertically oriented wells compatible with automated reaction setup using a robotic liquid handling system.

Case content is sufficient for 1728 reactions.

Case content is sufficient for 3000 reactions.

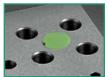
Gal.#	Description	uly/Bag
T319-72D2	RotoCycler™ 72 Rotor with 100 µL wells	24
T319-100D1	RotoCycler™ 100 Rotor with 25 µL wells	30


Consumables on this page are certified RNase, DNase, Pyrogen and DNA-free

T319-4WS1

RotoCyclerTM 72 Workstation

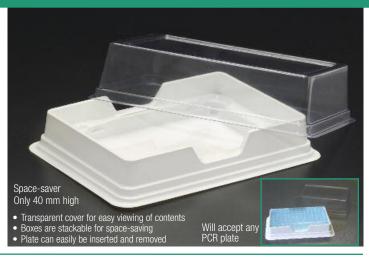
Made of aluminum

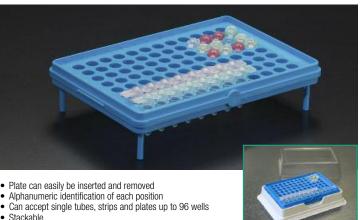

In order to facilitate the handling and insertion of caps on the tubes, Simport® offers a special solid aluminum loading rack. This rack can hold up to 18 x 0.1 ml tube strips for a total of 72 tubes. Other cavities can hold larger reaction tubes. To keep reactions cool during setup, simply place the rack in a refrigerated area. For easy reference, all wells are numbered. Color coding is made possible by inserting a Capinsert™ in up to two locations on the rack. Five hundred color coding inserts of assorted colors are enclosed.

- 1. For 0.5 ml tubes T325-3 and T325-4.
- 2. For 0.2 ml tubes T325-1, T325-2 and T325-12.
- 3. For tube strips T319-4N.

Cat.#	Description	Qty/Box
T319-4WS1	RotoCycler™ 72 Workstation	1

Color coding possible using a Simport® Capinsert. Ten colors available. See page 128 for more details.


T327


COMBI-BOXTM

Made of pvc

The Simport® Combi-Box™ can be used not only as a storage rack but also as a workstation. The white base will accept all 96- and 384-well plates and an easy to remove transparent cover allows easy viewing of contents. Being only 40 mm high, the stackable Combi-Box™ saves space on the lab bench and on refrigerator or freezer shelves. For single tubes as well as strips, use the Combi-Rack™ (T327-1) which can hold up to 96 tubes or 12 strips of 8.

Cat. #	Color	Qty/Cs
T327	White base	5

T327-1 **COMBI-RACKTM**

Made of polypropylene

The Simport® Combi-Rack™ is an innovative support that can hold up to 96 PCR tubes or 12 strips of 8 tubes with caps. Each hole is identified with an alphanumeric numbering system for identifying tubes. The grid stands on 4 legs and can be placed on a lab counter or in a refrigerator or freezer shelf. Made of polypropylene, it can easily withstand temperatures from -80 °C to +121 °C. It is also ideal for carrying and storing, freezing and transporting reagents and

For storage, simply place the Combi-Rack™ in the T327 Combi-Box™ and place

Cat. #	Color	Qty/Cs
T327-1	Rlug	5

T328-96

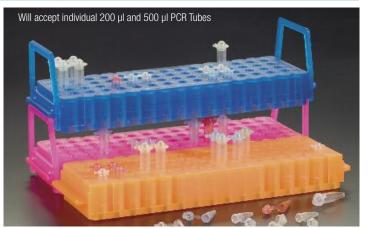
PCRackTM

Made of polypropylene

This convenient space saving rack was designed especially for storing and working with PCR samples. The PCRack™ will accept all models of 0.2 ml tubes, along with strips of 8 or 12 tubes. 96-well PCR plates can also be accommodated.

The PCRack™ can be horizontally attached to each other in order to build-up any configuration you desire. With the cover on, they are easily stackable one on top of another. Thanks to these special features, efficiency is highly improved allowing you to carry a multitude of tubes and/or strips at the same time.

Cat. #	Color	Qty/Cs	Cat. #	Color	Qty/Cs
T328-96B	Blue	20	T328-96R	Red	20
T328-96G	Green	20	T328-96Y	Yellow	20
T328-960	Orange	20	T328-96AS	Assorted*	20
T328-96P	PinK	20	*Blue, green, orange	, pink, yellow.	


S500-80

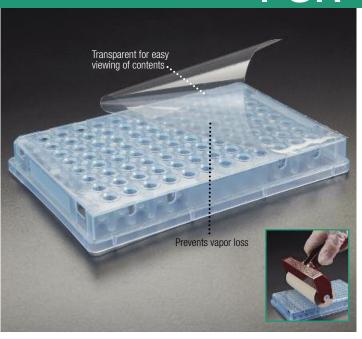
UniRackTM

Made of polypropylene

The UniRack™ offers the laboratory a support far more versatile and easy to use than any other rack available today. It is designed to use minimum counter space while offering maximum flexibility. Made of polypropylene, it allows great resistance to various chemicals used in laboratories. For further information, see page 142.

Cat. #	Color	Qty/Cs	Cat. #	Color	Qty/Cs
S500-80B	Blue	10	S500-80R	Red	10
S500-80G	Green	10	S500-80Y	Yellow	10
S500-800	Orange	10	S500-80AS	Assorted*	10
S500-80P	PinK	10	Lid Cat. #	Color	Qty/Cs
*Blue, green, orange,	pink, yellow.		S501-80	Transparent	10

T329-1 & -2


SecureSealTM Thermal Adhesive Sealing Film for PCR application

This transparent sealing tape consists of a 2.0 mil polyolefin film coated on one side with a pressure sensitive acrylate adhesive which does not interfere with cycle reactions. It is ideal for reducing well-to-well contamination and/or spill over in sensitive PCR applications where the minimization of evaporation and vapor loss is

SecureSeal[™] Thermal Film was developed with the assistance of a major cycler manufacturer for PCR applications. Not only does it offer low-autofluorescence but it will prevent vapor loss and is thermostable and functional from -70 °C to +100 °C. Certified RNAse, DNAse and DNA-free. DMSO resistant.

Note: Performance may depend upon the specific collection/sample vessel used as well as the specific conditions to which it is subjected.

Cat.#	Color	Sterile	Qty/Pk	Qty/Ca
T329-1	Transparent	No	100	1000
T329-2	Transparent	Yes	100	1000

T329-5

SecureSealTM Aluminum Sealing Foil

This type of material is ideal for manual sealing during PCR work and also for high throughput applications. Adhesive backing makes it easy to apply. Will resist temperatures from -80 °C to +120 °C. It is recommended to use the Amplate™ Roller (T329-9) to ensure a perfect bond, eliminating the dangers of evaporation. Pierceable with a pipet tip for easy access to sample. Certified RNAse, DNAse and DNA-free. DMSO resistant.

Cat.#	Description	Qty/Pk
T329-5	Peeling foil	100 sheets

T329-9 AMPLATETM Roller

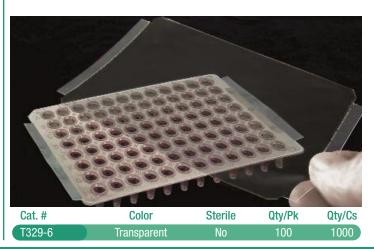
For ensuring a perfect seal when using either SecureSeal™ Thermal sealing film or foil on PCR plates. Roller made of medium hard rubber. Heavy-duty handle with comfort grip reducing fatigue. Will last a long time.

T329-6

SecureSeal[™] Thermal Adhesive Sealing Film for Real Time qPCR Application

With the highest transparency, this polyolefin film offers a special pressure sensitive DMSO-resistant silicone adhesive embedded inside the film itself. A polyester backing with end tabs assures easy positioning of the plate. This film is also perfectly suited for raised-rim plates ensuring reliable sealing around each well. Functional from -70 °C to +100 °C. Certified RNAse, DNAse and DNA-free.

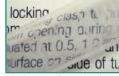
Cat.#	Size	Qty/Pk
T329-9	10.16 cm (4 in.)	1


T329-10 AMPLATETM Mat

Made of TPE

This flexible sealing cover is used on 96-well plates along with clip down and screw top thermal cyclers and has been proven to be a secure and effective way of sealing. Since it is reusable, it is a nice way to make this step of the procedure cost effective. Dimples on one side of the mat ensure it is well placed over the tubes. Can be used in temperatures ranging from -20 °c to +121°c.

Cat.#	Color	Qty/Pk
T329-10	Blue	5


PCR® THERMAL CYCLER GUIDE

Manufacturer	Application	T319 Series -4	T319 Series -72	T319 Series -100	T323 Series -96	T323 Series -96LP	T323 Series -96SK	T323 Series -100	T323 Series -101	T323 Series -103	T323 Series -104	T323 Series -384	T324 Series -96SK	T324 Series -384SK
Amersham														
MegaBACE™ 500	Sequencing						•						•	
MegaBACE™ 1000 mark II	Sequencing						•						•	
MegaBACE™ 4000	Sequencing													
Applied Biosystems (Life Technologies) Veriti® 0.1 ml 96-well Block	PCR										•			
Veriti® 0.2 ml 96-well Block	PCR									•				
GeneAmp® 2700/2720/9600	PCR				•				•	•				
GeneAmp® 9700	PCR				•					•			•	•
GeneAmp® 9800 Fast Block	PCR										•			
7000, 7300, 7500, 7700, 7900, ViiA7™	Real-Time PCR				•				•	•				
7500 Fast, 7900HT Fast 96-well block, ViiA7™ 7900HT Standard 96-well Block, ViiA7™	Real-Time PCR Real-Time PCR								•	•	•	•		
7900HT 384 well block, ViiA7	Real-Time PCR											•		•
StepOne Plus™	Real-Time PCR										•			
3100 Genetic Analyser	Sequencing													
3130 Genetic Analyser	Sequencing				•					•				
310 Genetic Analyser	Sequencing				•					•				
3700 DNA Analyser	Sequencing				•					•				
3730/3730XL DNA Analyser	Sequencing				•					•				
Siometra	DOD													
Jno · · ·	PCR				•	•	•			•			•	
Ino II	PCR				•	•				•				
1 Thermocycler	PCR				•	•	•			•		•	•	
gradient robot	PCR PCR				•		•			•			•	
Professional	PCR				•	•	•						•	
Bio-Rad/MJ	1 011													
Cycler® / MyCycler®	PCR				•					•				
C1000TM, S1000TM	PCR				•	•	•			•		•	•	•
TC-2(xx)	PCR				•	•	•	•		•		•	•	•
TC-100™ with 96-well block	PCR				•	•	•	•		•			•	
Cycler TM	Real-Time PCR				•									
q™4 / iq™5, MyiQ, MyiQ2	Real-Time PCR				•									
FX96 TM	Real-Time PCR					•	•						•	
CFX384™	Real-Time PCR											•		•
Opticon™, Opticon 2™, Chromo4™	Real-Time PCR					•	•						•	
AiniOpticon™	Real-Time PCR				•		•							
BaseStation™ Corbett Research	Sequencing													
alm Cycler™	PCR					•	•							
ene Technologies	1011													
S1/GS4/GSX	PCR					•	•					•		•
MWG														
Primus 96	PCR				•	•	•		•	•			•	
rimus 384	PCR											•		•
heQ Lifecycler™	PCR				•	•	•			•			•	
Peqlab														
eqSTAR 96	PCR				•	•	•							
liagen														
totor-Gene Q GensoQuest		•	•	•										
abCycler Basic 96 abCycler Gradient 96	PCR				•	•	•			•			•	
abCycler Gradient 96 abCycler 384	PCR PCR											•		•
Stratagene (Agilent) and Eppendorf	TOIT													
RoboCycler®	PCR				•									
Gradient Cycler	PCR				•		•			•		•	•	•
Mastercycler® Gradient	PCR				•	•	•	•		•		•	•	•
MasterCycler® EP Gradient/Pro	PCR				•	•	•	•		•		•	•	•
M384	PCR											•		•
1x4000®	Real-Time PCR				•	•				•				
Их3000Р®, Мх3005Р ^{тм}	Real-Time PCR				•	•				•				
Nastercycler® ep realplex	Real-Time PCR				•	•	•	•		•	•		•	
akara														
P3000	PCR				•	•				•				
echne	DOD													
lexigene, TC-412, TC-4000	PCR				•	•	•	•	•	•		•	•	
Genius, Touchgene, TC-512, TC-5000	PCR				•					•		•	•	•
C-Plus	PCR				•	•	•	•						
Juantica Thermo Scientific	Real-Time PCR													
hermo Scientific PCR Express, Px2, PxE	PCR				•	•	•			•		•	•	•
GK Express, PX2, PXE MultiBlock System & MBS®	PCR				•	•	•			•		•	•	•
ouchdown	PCR				•	•	•			•		•	•	•
Omnigene	PCR				•	•	•		•	•			•	
Dmn-E	PCR				•	•	•			•			•	
Iransgenomic														
Wave	Sequencing						•						•	

ClikLok™ Microcentrifuge Tube Family T330

Microcentrifuge Tube

- · Extra clarity for better visual inspection
- Boil-proof design
- Ultra rugged walls made for high speed centrifugation
- Unique ClickLok™ sealing mechanism
- Made of highest purity polypropylene

All microcentrifuge tubes have a super clear highly polished surface for better viewing of

Made of polypropylene

These 0.6 ml and 1.5 ml graduated rugged tubes are made of laboratory grade polypropylene suitable to withstand the stress of high speed centrifugation up to 20,000g. The one-piece construction incorporates a snug fitting and reliable attached cap even with prolonged boiling. The bottom is reinforced for added protection against leakage. Maximum clarity for visual sample inspection. A frosted writing surface on closure and side of tube allows for easy and convenient sample identification. Highly polished interior ensures low liquid retention. Available in 4 colors. Packaged in tamperproof resealable safety-lock bags.

		1	
Color	Volumo	Oty/Dk	Oty/Cc

Cat. #	Color	Volume	Qty/Pk	Qty/Cs
T330-6N	Natural	0.6 ml	500	5000
T330-6B*	Blue	0.6 ml	500	5000
T330-6G*	Green	0.6 ml	500	5000
T330-6Y*	Yellow	0.6 ml	500	5000

^{*}Available on request only. Minimum quantities apply. Please enquire for more details.

Cat. #	Color	Volume	Qty/Pk	Qty/Cs
T330-7N	Natural	1.5 ml	500	5000
T330-7B	Blue	1.5 ml	500	5000
T330-7G	Green	1.5 ml	500	5000
T330-7Y	Yellow	1.5 ml	500	5000
T330-7AM	Amber	1.5 ml	500	5000

Certified RNase, DNase, Pyrogen and DNA-free

Conical bottom 2 ml microcentrifuge tubes

Cat. #	Color	Qty/Pk	Qty/Cs
T330-72N	Natural	500	5000
T330-72B*	Blue	500	5000
T330-72G*	Green	500	5000
T330-72Y*	Yellow	500	5000
T330-72AM*	Amber	500	5000

T330-72, 72A

2 ml Microcentrifuge Tube

Made of polypropylene

These 2 ml microcentrifuge tubes offer a special design to produce a more secure closure. This will help to prevent tubes from opening during centrifugation, boiling, storing, freezing and shipping. They are graduated at 0.5, 1.0 and 1.5 ml. They are autoclavable to 121 °C. Pierceable lid. Etched surface on side of tube for sample identification. Large etched graduations make volumes easy to read. Improved polypropylene transparency for easy viewing of samples.

Tubes can withstand centrifugation up to 15,000g.

Certified RNase, DNase, Pyrogen and DNA-free

Self-standing conical bottom 2 ml microcentrifuge tubes

Cat. #	Color	Qty/Pk	Qty/Cs
T330-72AN	Natural	500	5000
T330-72AB*	Blue	500	5000
T330-72AG*	Green	500	5000
T330-72AY*	Yellow	500	5000
T330-72AAM*	Amber	500	5000

^{*}Available on request only. Minimum quantities apply. Please enquire for more details.

T330-5N

EconoTubeTM

Made of polypropylene

The least expensive microcentrifuge tube for all applications including storage and reactions. The one-piece construction incorporates a snug fitting and reliable attached cap. Not to be used for boiling applications.

Cat. #	Color	Volume	Qty/Pk	Qty/Cs
T330-5N	Natural	1.5 ml	500	5000

T330LST

Low Surface Tension Microcentrifuge Tubes

Made of polypropylene

The special type of plastic used provides these tubes with a low adhesion surface and optimum sample yield. No lubricant (such as silicone) is necessary, thereby eliminating the danger of sample contamination. It is also graduated and designed to withstand the stress of high speed centrifugation up to 20,000g. One-piece construction with snug fitting attached cap and reinforced tube bottom for added protection against leakage. Tubes are autoclavable to 121 °C. Packaged in tamperproof resealable safety-lock bags.

Cat. #	Color	Volume	Qty/Pk	Qty/Cs
T330-6LST	Natural	0.6 ml	500	5000
T330-7LST	Natural	1.5 ml	500	5000
T330-8LST	Natural	1.5 ml	500	5000
T330-72LST	Natural	2 ml	500	5000

T330-8

Microcentrifuge Tube with Pick-Up Tab

Made of polypropylene

These tubes have all the fine features of the T330-7 series, but they also incorporates a convenient pick-up tabs for easier handling without actually touching the tube. Available in four different colors.

Cat. #	Color	Volume	Qty/Pk	Qty/Cs
T330-8N	Natural	1.5 ml	500	5000
T330-8B*	Blue	1.5 ml	500	5000
T330-8G*	Green	1.5 ml	500	5000
T330-8Y*	Yellow	1.5 ml	500	5000

^{*}Available on request only. Minimum quantities apply. Please enquire for more details.

T330-15

Microcentrifuge Tube with Locking Cap

Made of polypropylene

These Secure-Lock™ microcentrifuge tubes offer a special locking system which can be bent upward to lock on the cap, ensuring extra protection during critical steps such as boiling, freezing, centrifugation and shipping. Tubes are graduated at 0.5, 1.0 and 1.5 ml. Lids can be pierced easily with a syringe needle. Etched surface on side of tube for sample identification. Can be used at extreme temperatures from -175 °C to +121 °C. Autoclavable. Maximum centrifugation RCF: 20,000g. Packaged in tamperproof resealable safety-lock bags of 500 tubes.

Cat. #	Color	Qty/Pk	Qty/Cs
T330-15N	Natural	500	5000
T330-15B*	Blue	500	5000
T330-15G*	Green	500	5000
T330-15Y*	Yellow	500	5000

Anatomy of a T330-15

*Available on request only. Minimum quantities apply. Please enquire for more details.

Locking mechanism preventing accidental opening of lid

T331-10

Microcentrifuge Tube with SECURE-LOCKTM

Made of polypropylene

These Secure-Lock™ microcentrifuge tubes offer a special locking clasp to produce a more secure closure. This will help to prevent tubes from opening during centrifugation, boiling, storing, freezing and shipping. They are graduated at 0.5, 1.0 and 1.5 ml. They are autoclavable to 121 °C. Pierceable lid. Etched surface on side of tube for sample identification.

Cat. #	Color	Qty/Pk	Qty/Cs
T331-10N	Natural	500	5000
T331-10B*	Blue	500	5000
T331-10G*	Green	500	5000
T331-10Y*	Yellow	500	5000

^{*}Available on request only. Minimum quantities apply. Please enquire for more details.

Tubes on this page are certified RNase, DNase, Pyrogen and DNA-free

T331-20

Microcentrifuge Tube with Pick-Up Tab and SECURE-LOCKTM

Made of polypropylene

This tube is a combination of series T330-8 and T331-10 microcentrifuge tubes giving it the best of both: a pick-up tab for easier handling without actually touching the tube, and a Secure-Lock™ to help prevent tubes from opening during centrifugation, shipping, boiling or freezing. Graduated at 0.5, 1 and 1.5 ml. Autoclavable to 121 °C. Pierceable lid. Etched surface on side for sample identification.

Cat. #	Color	Qty/Pk	Qty/Cs
T331-20N	Natural	500	5000
T331-20B*	Blue	500	5000
T331-20G*	Green	500	5000
T331-20Y*	Yellow	500	5000

^{*}Available on request only. Minimum quantities apply. Please enquire for more details.

T330-64

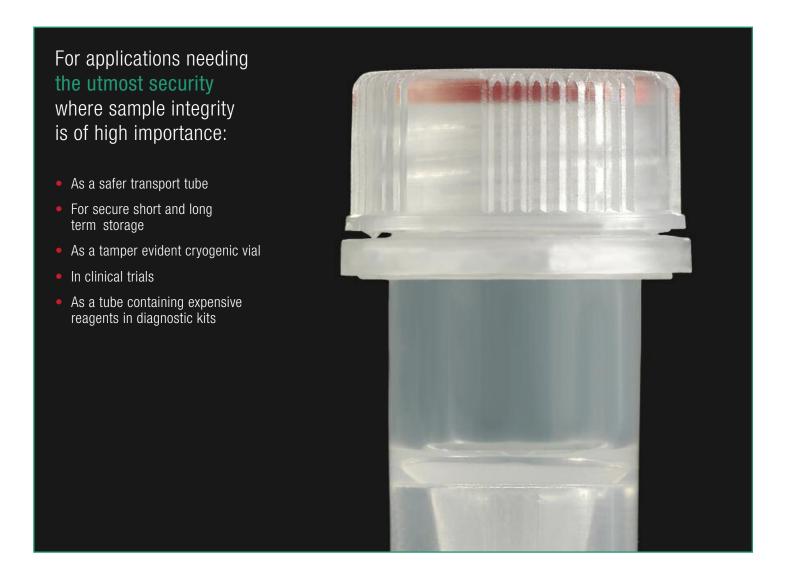
Microcentrifuge Tube Storage Box

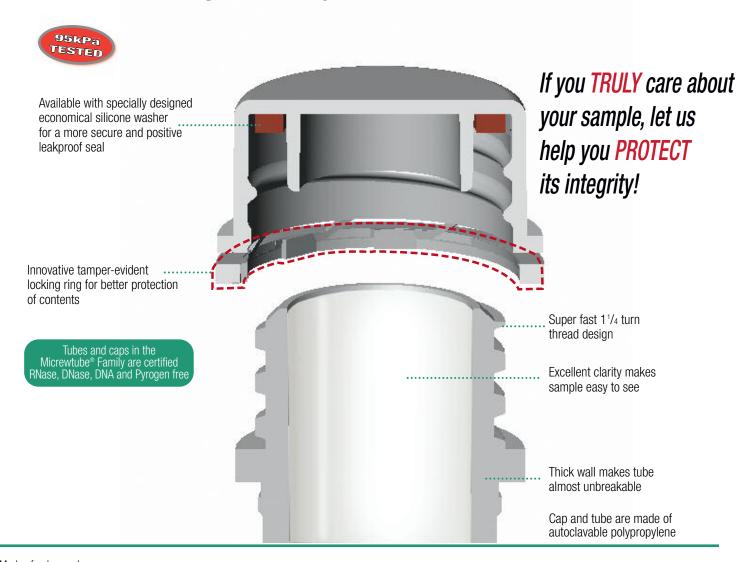
Made of high impact polystyrene

This microcentrifuge tube storage box with a polyurethane foam insert is ideal for holding up to 64 tubes from 0.5 ml to 2 ml. It should be used within a temperature range of -90 $^{\circ}\text{C}$ to 80 $^{\circ}\text{C}$.

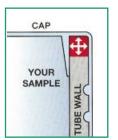
A transparent cover allows you to see the contents of the box, and is keyed to the base in order to prevent misalignment. To improve your inventory control, you can write with a marker pen on the cover surface which is pre-printed with a series of squares (numbered from 1 to 64). You can also save space by stacking these boxes in freezers, refrigerators and on lab counters.

Cat.#	Qty/Pk	Qty/Cs
T330-64	4	24




For your peace of mind A new era in sample protection

Simport® introduces the new **Tamper Evident** Micrewlock™ Family


Anatomy of a Tamper Evident Micrewtube®

Made of polypropylene

At last, a TAMPER EVIDENT microcentrifuge tube incorporating all the features and benefits of the Simport® MICREWTUBE® Family. Ideal for all applications requiring a tamper evident seal, a Simport® tamperproof MICREWTUBE® also has a multitude of benefits when used in your lab. It is ideal for freezer storage, boiling applications, centrifugation etc... and will fit most standard microcentrifuge rotors.

Simply screw the cap on the tube and the tamper evident sealing ring is automatically in place. When unscrewed, the ring is detached from the tube and remains in its position, showing clearly that the tube was opened. The flat cap facilitates manipulation especially in aseptic procedures. It does not incorporate an attachment loop for users who prefer to remove it completely from the tube when filling or sampling. The washer seal secured in the cap ensures a positive leakproof seal, time after time, keeping the integrity of small samples under even the most adverse conditions. The Tamper Evident Microwtube is available in various sterile and non sterile configurations. The tubes are available non-printed or printed with graduations and white marking area for sample identification. Conical bottom tubes can be centrifuged up to 20,000q. All tubes are gamma irradiated and packaged in tamperproof resealable bags to protect remaining tubes from contamination. Sterile tubes are also available with printed graduations and white marking area for sample identification. Tubes and caps are also available separately.

The sample remains secure thanks to the sealing ring enclosed on all four of its sides.

As the cap is tightened, the sealing ring is compressed and tries to find a gap to move into.

Available with or without graduations and oversized marking area

All microcentrifuge tubes in the MicrewLock™ Family have a super clear highly polished surface for better viewing of contents.

The Simport® Tamper Evident Micrewlock™ Family

T341TP

Tamper Evident Micrewtube® (tube only)

Made of polypropylene

These tubes are specially made to be used with tamperproof caps. Available in plain or graduated configuration, the latter being provided with a white marking area for sample identification. Can be used at extreme temperatures from -196 °C to +121 °C.

Maximum centrifugation RCF: 20,000g. (conical bottom tubes only)

Dimensions: 44 mm H x 11 mm dia.

Plain Cat.#	Graduated Cat.#	Style	Volume (ml)	Qty/Pk
T341-2TTP	T341-2TPRTP	Self-standing	0.5	1000
T341-4TTP	T341-4TPRTP	Self-standing	1.5	1000
T341-5TTP	T341-5TPRTP	Conical bottom	1.5	1000
T341-6TTP	T341-6TPRTP	Self-standing	2.0	1000
T341-7TTP	T341-7TPRTP	Conical bottom	2.0	1000

T340TP

Tamper Evident Screw Cap with O-ring Seal & Flat Top (cap only)

Made of polypropylene

The cap is molded with a deep internal lip that fits snugly against the interior wall of the tube. It will prevented the contents from coming in contact with the seal or threads, thereby reducing the chances of sample contamination. The cap's high profile facilitates manipulation especially in aseptic procedures. All tubes and closures are manufactured in a clean environment.

Other packaging configurations available. See page 124.

Cat. #	Color*	Qty/Pk
T340NOSFTTP	Natural	1000

^{*} The following colors are available on special order: blue, green, lilac, red, yellow, and white. Please contact a customer service representative for further details.

How does it work?

Screw Tamper Evident cap on tube until locking ring clicks over serrated tube neck.

Contents are now protected until Tamper Evident cap is removed.

When unscrewing the cap, the Tamper Evident locking ring is detached and freed from closure.

View of separate components of a Tamper Evident Micrewtube® after use.

Tube made of polypropylene Cap made of polyethylene

The SnapTwist™ Micrewtube® provides all the advantages of a modern microcentrifuge tube with screw cap but the closure is a true time saver. The SnapTwist™ Micrewtube® has a multitude of applications around your lab. It is ideal for freezer storage, boiling application, centrifugation etc, and will fit most standard microcentrifuge rotors.

The tubes can be securely sealed by simply capping the closures on. Removal of caps requires an easy 1/4 turn (twist). The ease with which these caps can be manipulated eliminates the danger of spillage associated with other push-on/pull-off caps. The deep internal lip of the cap fits snugly against the interior wall of the tube preventing the contents from coming in contact with the threads, thus reducing the chances of sample contamination. The quality of the sealing system is such

This series of tubes is not available with graduations.

Tubes

Cat. #	Description	Volume	Qty/Pk
T342-4T	Self-Standing	1.5 ml	1000
T342-5T	Conical Bottom	1.5 ml	1000
T342-6T	Self-Standing	1.8 ml	1000
T342-7T	Conical Bottom	1.8 ml	1000

Caps			
Cat. #	Description	Color	Qty/Pk
T343NLS	Without Loop	Natural	1000
T343BLS	Without Loop	Blue	1000
T343GLS	Without Loop	Green	1000
T343LLS	Without Loop	Lilac	1000
T343RLS	Without Loop	Red	1000
T343YLS	Without Loop	Yellow	1000

Caps Cat. #	Description	Color	Qty/Pk
T343NLSL	With Loop	Natural	1000
T343BLSL	With Loop	Blue	1000
T343GLSL	With Loop	Green	1000
T343LLSL	With Loop	Lilac	1000
T343RLSL	With Loop	Red	1000
T343YLSL	With Loop	Yellow	1000
T343WLSL	With Loop	White	1000

Two types of caps available. The one with attached loop helps avoid mix-ups and possible contamination.

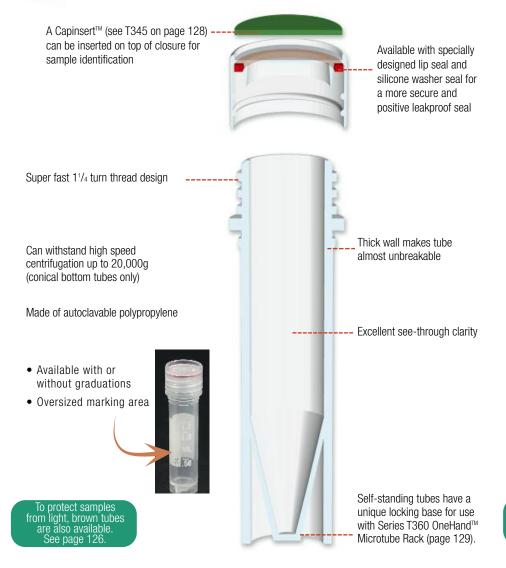
All microcentrifuge tubes in the SnapTwist™ Family have a super clear highly polished surface for better viewing of contents.

The vial can be securely sealed by simply snapping the cap on

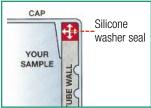
Removal of cap requires an easy 1/4 turn (twist).

These new tubes have molded ridges matching serrations on racks such as the Simport® T360 OneHand™Rack on page 121.

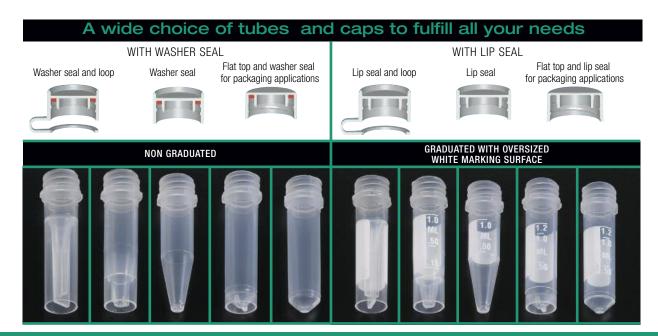
For Capinsert[™] details, please refer to T345 on page 128.



Tubes and caps in the Micrewtube® Family are certified RNase, DNase, DNA and Pyrogen free



Anatomy of a Standard Micrewtube®



On washer seal caps, samples remain secure thanks to the sealing washer being enclosed on all four of its sides.

As the cap is tightened, the sealing ring is compressed and tries to find a gap to move into.

Tubes and caps in the Micrewtube® Family are certified RNase, DNase, DNA and Pyrogen free

Micrewtube® with Washer Seal Screw Cap

T332 With Washer Seal Screw Cap and Attachment Loop

Made of polypropylene

The washer seal secured in the top of the cap ensures a positive leakproof seal, time after time, keeping the integrity of small samples under even the most adverse conditions. This series of tubes is available either plain or with printed graduations and white marking area for sample identification. Caps are

supplied with attachment loops, and allow them to remain attached to the tube in order to prevent mix-up and contamination. These microcentrifuge tubes have all the other fine features stated in the general description. Perfect for cryogenic work. Non skirted tubes can be centrifuged up to 20,000g. Skirted tubes can be centrifuged up to 17,000g. Will withstand temperatures from -196 °C to +121 °C.

T334 With Washer Seal Screw Cap

Made of polypropylene

Similar to the T332 Series but without the "tethered cap" feature. This series of tubes is available either plain or with printed graduations and white marking area for sample identification. The caps do not have the attachment loops for users who prefer to remove the caps completely from the tubes when filling or

sampling. These microcentrifuge tubes have all the other fine features stated in the general description. Perfect for cryogenic work. Non skirted tubes can be centrifuged up to 20,000g. Skirted tubes can be centrifuged up to 17,000g. Will withstand temperatures from -196 °C to +121 °C.

T335 With Washer Seal and Flat Screw Cap

Made of polypropylene

This series of tubes is also available either plain or with printed graduations and white marking area for sample identification. Washer seal screw caps are unattached but incorporate a flat top which provides a writing surface. These flat surfaced caps can be used with automatic capping machines in packaging

industries. Closures are supplied in natural color. Perfect for cryogenic work. Non skirted tubes can be centrifuged up to 20,000g. Skirted tubes can be centrifuged up to 17,000g. Will withstand temperatures from -196 °C to +121 °C.

Micrewtube® with Lip Seal Screw Cap

T336 With Lip Seal Screw Cap and Attachment Loop

Made of polypropylene Cap made of polyethylene

The flexible sealing lip inside the cap ensures a positive leakproof seal under even the most adverse conditions. This deep internal lip fits snugly against the interior wall of the tube preventing the contents from coming in contact with the threads, thus

reducing the chances of sample contamination. This series of tubes is available either plain or with printed graduations and white marking area for sample identification. Caps are supplied with attachment loops in order to prevent contamination and mix-up. These microcentrifuge tubes have all the other fine features stated in the introduction page, but cannot be autoclaved since closure is made of high density polyethylene. Non skirted tubes can be centrifuged up to 20,000g. Skirted tubes can be centrifuged up to 17,000g. Will withstand temperatures from -196 °C to +110 °C.

T338 With Lip Seal Screw Cap

Made of polypropylene Cap made of polyethylene

Similar to the T336 Series but without the "tethered cap" feature. This series of tubes is available either plain or with printed graduations and white marking area for sample identification. They have all the other fine features of the T336 series of tubes, but the caps

are not supplied with the attachment loop for users who prefer to remove the caps completely from the tubes when filling or sampling. Cannot be autoclaved since closure is made of high density polyethylene. Non skirted tubes can be centrifuged up to 20,000g. Skirted tubes can be centrifuged up to 17,000g. Will withstand temperatures from -196 °C to +110 °C.

Tubes and caps in the Micrewtube® Family are certified RNase, DNase, DNA and Pyrogen free

T339 With Lip Seal and Flat Screw Cap

Made of polypropylene Cap made of polyethylene

This series of tubes is available either plain or with printed graduations and white marking area for sample identification. Lip seal screw caps are unattached but incorporate a flat top which provides a writing surface. These flat surfaced tubes can also be used with

automatic capping machines and in packaging industries. Closures are supplied in natural color. Tubes are made of polypropylene while polyethylene caps are easy to screw on and off. More economical than T335 Series 0-ring seal model. Cannot be autoclaved since closure is made of high density polyethylene. Non skirted tubes can be centrifuged up to 20,000g. Skirted tubes can be centrifuged up to 17,000g.

SELECTION CHART

1783278379									
Bar Code printing available. Contact Simport for more details.	Tamperproof Screw Cap With washerseal and flat top			With washer seal and attachment loop			W	With washer seal	
	T335-2TP Non sterile	Cap not asso and Non gra		T332-2 Non sterile	Cap loops are but caps are n and Non gradu	ot screwed on	T334-2 Non sterile	Cap not as and Non g	
Self-standing 0.5 ml	T335-2STP Sterile	Caps are sli on and Non	ghtly screwed graduated	T332-2S Sterile	Pre-attached on an graduated		T334-2S Sterile	Caps are s and Non g	crewed on raduated
0.5 111	T335-2SPRTP Sterile	Caps are slig on, white mand graduat		T332-2SPR Sterile	Pre-attached on warea and grad	/hite marking	T334-2SPR Sterile	Caps are s white marl and gradua	
	T335-4TP Non sterile	Cap not asso and Non gra		T332-4 Non sterile	Cap loops are but caps are n and Non gradu	ot screwed on	T334-4 Non sterile	Cap not as and Non g	
Self-standing 1.5 ml	T335-4STP Sterile	Caps are slig on and Non	ghtly screwed graduated	T332-4S Sterile	Pre-attached of screwed on ar graduated		T334-4S Sterile	Caps are s and Non g	crewed on raduated
M	T335-4SPRTP Sterile	Caps are slig on, white mand graduat		T332-4SPR Sterile	Pre-attached on warea and grad	/hite marking	T334-4SPR Sterile	Caps are s white marl and gradua	
	T335-5TP Non sterile	Cap not asso and Non gra		T332-5 Non sterile	Cap loops are but caps are n and Non gradu	ot screwed on	T334-5 Non sterile	Cap not as and Non gi	
Conical bottom 1.5 ml	T335-5STP Sterile	Caps are slig and Non gra	ghtly screwed on aduated	T332-5S Sterile	Pre-attached of screwed on ar graduated		T334-5S Sterile	Caps are s and Non g	crewed on raduated
V	T335-5SPRTP Sterile	Caps are slig on, white mand graduat		T332-5SPR Sterile	Pre-attached on warea and grad	/hite marking	T334-5SPR Sterile	Caps are s white marl and gradua	
	T335-6TP Non sterile	Cap not asso and Non gra		T332-6 Non sterile	Cap loops are but caps are n and Non gradu	ot screwed on	T334-6 Non sterile	Cap not as and Non gi	
Self-standing 2.0 ml	T335-6STP Sterile	Caps are slig on and Non	ghtly screwed graduated	T332-6S Sterile	Pre-attached of screwed on ar graduated		T334-6S Sterile	Caps are s and Non g	crewed on raduated
U	T335-6SPRTP Sterile	Caps are slig white marki and graduat		T332-6SPR Sterile	Pre-attached on warea and grad	/hite marking	T334-6SPR Sterile	Caps are s white marl and gradua	
	T335-7TP Non sterile	Cap not asso and Non gra		T332-7 Non sterile	Cap loops are but caps are n and Non gradu	ot screwed on	T334-7 Non sterile	Cap not as and Non g	
Conical bottom 2.0 ml	T335-7STP Sterile	Caps are slig on and Non	ghtly screwed graduated	T332-7S Sterile	Pre-attached of screwed on ar graduated		T334-7S Sterile	Caps are s and Non g	crewed on raduated
U	T335-7SPRTP Sterile	Caps are slig white marki and graduat		T332-7SPR Sterile	Pre-attached on warea and grad	/hite marking	T334-7SPR Sterile	Caps are s white marl and gradua	
PACKAGING		Qty/Pk	Qty/Cs		Qty/Pk	Qty/Cs		Qty/Pk	Qty/Cs
INFORMATION	Non Sterile	-	1000	Non Sterile	-	1000	Non Sterile	-	1000
	Sterile	50	500	Sterile	50	500	Sterile	50	500

SELECTION CHART

						6					
	h washer s and flat top		and	With lip seal attachment l	Іоор	V	Vith lip seal		With lip seal and flat top		
T335-2 Non sterile	Caps not asso and Non grad		T336-2 Non sterile	Cap loops are p but caps are no and Non gradu	ot screwed on	T338-2 Non sterile	Caps are not and Non gra		T339-2 Non sterile	Caps not as and Non gra	
T335-2S Sterile	Caps are scre and Non grad		T336-2S Sterile	Pre-attached c screwed on an graduated		T338-2S Sterile	Caps are scr and Non gra		T339-2S Sterile	Caps are so and Non gra	
T335-2SPR Sterile	Caps are scre white markin and graduation	g area	T336-2SPR Sterile	Pre-attached c screwed on, w area and gradu	hite marking	T338-2SPR Sterile	Caps are scr white markii and graduat	ng area	T339-2SPR Sterile	Caps are so white mark and gradua	ing area
T335-4 Non sterile	Caps not asse and Non grad		T336-4 Non sterile	Cap loops are pout caps are no and Non gradu	ot screwed on	T338-4 Non sterile	Caps are not and Non gra		T339-4 Non sterile	Caps not as and Non gra	
T335-4S Sterile	Caps are scre and Non grad		T336-4S Sterile	Pre-attached c screwed on an graduated		T338-4S Sterile	Caps are scr and Non gra		T339-4S Sterile	Caps are so and Non gra	
T335-4SPR Sterile	Caps are scre white markin and graduation	g area	T336-4SPR Sterile	Pre-attached c screwed on, w area and gradu	hite marking	T338-4SPR Sterile	Caps are scr white marking and graduati	ng area	T339-4SPR Sterile	Caps are so white mark and gradua	ing area
T335-5 Non sterile	Caps not asso and Non grad		T336-5 Non sterile	Cap loops are pout caps are no and Non gradu	ot screwed on	T338-5 Non sterile	Caps are not and Non gra		T339-5 Non sterile	Caps not as and Non gra	
T335-5S Sterile	Caps are scre and Non grad		T336-5S Sterile	Pre-attached c screwed on an graduated		T338-5S Sterile	Caps are scr and Non gra		T339-5S Sterile	Caps are so and Non gra	
T335-5SPR Sterile	Caps are scre white markin and graduation	g area	T336-5SPR Sterile	Pre-attached c screwed on, w area and gradu	hite marking	T338-5SPR Sterile	Caps are scr white marking and graduati	ng area	T339-5SPR Sterile	Caps are so white mark and gradua	ing area
T335-6 Non sterile	Caps not asso and Non grad		T336-6 Non sterile	Cap loops are pout caps are no and Non gradu	ot screwed on	T338-6 Non sterile	Caps are not and Non gra		T339-6 Non sterile	Caps not as and Non gra	
T335-6S Sterile	Caps are scre and Non grad		T336-6S Sterile	Pre-attached c screwed on an graduated		T338-6S Sterile	Caps are screwed on and Non graduated		T339-6S Sterile	Caps are so and Non gra	
T335-6SPR Sterile	Caps are scre white markin and graduation	g area ´	T336-6SPR Sterile	corouged on white marking		T338-6SPR Sterile	SPR Caps are screwed on, white marking area and graduations		T339-6SPR Caps are screwed on, white marking area and graduations		ing area
T335-7 Non sterile	Caps not asso Non graduate		T336-7 Non sterile	T336-7 Cap loops are pre-attached		T338-7 Non sterile	Caps are not assembled and Non graduated		T339-7 Caps not assembled and Non graduated		
T335-7S Sterile	Caps are scre Non graduate		T336-7S Pre-attached caps are screwed on and Non graduated		T338-7S Sterile	and Mon graduated		T339-7S Sterile	and Non graduated		
T335-7SPR Sterile	Caps are scre white markin graduations		T336-7SPR Sterile	Pre-attached c screwed on, w area and gradu	hite marking	T338-7SPR Caps are screwed on, Sterile white marking area and graduations		T339-7SPR Sterile	Caps are so white mark and gradua	ing area	
	Qty/Pk	Qty/Cs		Qty/Pk	Qty/Cs		Qty/Pk	Qty/Cs		Qty/Pk	Qty/Cs
Non Sterile	-	1000	Non Sterile	-	1000	Non Sterile	-	1000	Non-Sterile	-	1000
Sterile	50	500	Sterile	50	500	Sterile	50	500	Sterile	50	500

783278379

T341T

MICREWTUBE® Plain

Made of polypropylene

Can be used at extreme temperatures from -196 °C to +121 °C.

Cat. #	Style	Volume (ml)	Qty/Pk
T341-2T	Self-standing	0.5	1000
T341-4T	Self-standing	1.5	1000
T341-5T	Conical bottom	1.5	1000
T341-6T	Self-standing	2.0	1000
T341-7T	Conical bottom	2.0	1000

T341TPR

MICREWTUBE® Graduated

Made of polypropylene

For your special needs, these tubes are identical to the T341 Series but are graduated and are provided with a white marking area for sample identification. Can be used at extreme temperatures from -196 °C to +121 °C.

Cat. #	Style	Volume (ml)	Qty/Pk
T341-2TPR	Self-standing	0.5	1000
T341-4TPR	Self-standing	1.5	1000
T341-5TPR	Conical bottom	1.5	1000
T341-6TPR	Self-standing	2.0	1000
T341-7TPR	Conical bottom	2.0	1000

T341TBR

MICREWTUBE®

For Light Sensitive Material

Made of polypropylene

These ungraduated tubes are identical to series T341 but their dark brown color allows them to be used when storing light-sensitive material. Can be used at extreme temperatures from -196 °C to +121 °C.

Cat. #	Style	Volume (ml)	Qty/Pk
T341-2TBR	Self-standing	0.5	1000
T341-4TBR	Self-standing	1.5	1000
T341-5TBR	Conical bottom	1.5	1000
T341-6TBR	Self-standing	2.0	1000
T341-7TBR	Conical bottom	2.0	1000

T341TLST

MICREWTUBE®

With Low Adhesion Surface

Made of polypropylene

Having all the advantages of our popular T341T Series, the specially formulated polypropylene used to manufacture these tubes provides a low adhesion surface to obtain maximum sample yield. Ideal for research procedures such as nucleic acid amplifications, protein work and others. No lubricants (such as silicone) necessary, thereby eliminating the danger of sample contamination. Can be used at extreme temperatures from -196 °C to +121 °C.

Cat. #	Style	Volume (ml)	Qty/Pk
T341-2TLST	Self-standing	0.5	1000
T341-4TLST	Self-standing	1.5	1000
T341-5TLST	Conical bottom	1.5	1000
T341-6TLST	Self-standing	2.0	1000
T341-7TLST	Conical bottom	2.0	1000

T361T

MICREWTUBE® with Molded Ridges

These new tubes have molded ridges matching serrations on racks such as the Simport T360 OneHand™ Microtube Rack on page 129, thus allowing the removal of caps with one hand. All Simport Micrewtube® closures (below and on page 128) can be used on these tubes. Made of polypropylene.



Tubes with ribs lock in place when engaged in serrated holes. For details on OneHand™ Microtube Rack, see page 129.

Cat. #	Style	Volume (ml)	Qty/Pk
T361-2T	Self-standing	0.5	1000
T361-4T	Self-standing	1.5	1000
T361-5T	Conical bottom	1.5	1000
T361-6T	Self-standing	2.0	1000
T361-7T	Conical bottom	2.0	1000

T361TPR MICREWTUBE® Graduated

Cat. #	Style	Volume (ml)	Qty/Pk
T361-2TPR	Self-standing	0.5	1000
T361-4TPR	Self-standing	1.5	1000
T361-5TPR	Conical bottom	1.5	1000
T361-6TPR	Self-standing	2.0	1000
T361-7TPR	Conical bottom	2.0	1000

T361TBR MICREWTUBE®

For Light Sensitive Material

Cat. #	Style	Volume (ml)	Qty/Pk
T361-2TBR	Self-standing	0.5	1000
T361-4TBR	Conical bottom	1.5	1000
T361-5TBR	Without skirt	1.5	1000
T361-6TBR	Conical bottom	2.0	1000
T361-7TBR	Without skirt	2.0	1000

T347AQX

Septum Screw Cap For Microcentrifuge Tubes

Made of polypropylene

The T347AQX screw cap incorporates a pierceable septum made of chemically resistant PTFE on the outside and silicone on the inside, both components being stable over a broad range of temperatures. The septum also acts as a silicone o-ring for better sample protection. It is especially made to fit and be used with all Simport Microw™ Microcentrifuge Tubes. The cap is pierceable with pipet tips as well as with syringe needles.

Cat. #	Description	Qty/Pk
T347AQX	Septum Screw Cap for Micrew Microcentrifuge Tubes	250

SCREW CAPS

T340 Colored Closures

Six styles of caps to choose from and two sealing types: washer seal and lip seal.

The cap is molded with a deep internal lip that fits snugly against the interior wall of the tube thus preventing the contents from coming in contact with the seal or threads, thereby reducing the chances of sample contamination. The cap's high profile facilitates manipulation especially in aseptic procedures and can remain attached (T332 & T336 Series) to the tube in order to eliminate mix-ups and contamination. All tubes and closures are manufactured in a clean environment.

Closures can be COLOR CODED by the use of T345 Series Colored Capinsert inserted on the top of the closure. This is accomplished without removing the cap. Colored caps are also available in all models as listed below.

With WASHER SEAL and without loop. Made of polypropylene.

Qty/Pk Cat. # Cat. # Color **T340 NOS T340 NLS Natura** T340 B0S T340 BLS T340 G0S T340 GLS Green 1000 T340 L0S T340 LLS T340 00S T340 OLS Orange **T340 R0S T340 RLS** Red T340 Y0S T340 YLS Yellow T340 W0S T340 WLS White T340 BROS T340 BRLS Brown

With WASHER SEAL and loop. Made of polypropylene.	LIP SEAL and loop. Made of polyethylene.		
Cat. #	Cat. #	Color	Qty/Pk
T340 NOSL	T340 NLSL	Natural	1000
T340 BOSL	T340 BLSL	Blue	1000
T340 GOSL	T340 GLSL	Green	1000
T340 LOSL	T340 LLSL	Lilac	1000
T340 00SL	T340 OLSL	Orange	1000
T340 ROSL	T340 RLSL	Red	1000
T340 YOSL	T340 YLSL	Yellow	1000
T340 WOSL	T340 WLSL	White	1000
T340 BR0SI	T340 BBI SI	Brown	1000

The following closures have a flat top to accommodate automatic capping machines in packaging industries.

	LELL		
Cat. #	Cat. #	Color	Qty/Pk
T340 NOSFT	T340 NLSFT	Natural	1000
T340 BOSFT	T340 BLSFT	Blue	1000
T340 GOSFT	T340 GLSFT	Green	1000
T340 LOSFT	T340 LLSFT	Lilac	1000
T340 00SFT	T340 OLSFT	Orange	1000
T340 ROSFT	T340 RLSFT	Red	1000
T340 Y0SFT	T340 YLSFT	Yellow	1000
T340 WOSFT	T340 WLSFT	White	1000
T340 BROSFT	T340 BRLSFT	Brown	1000

LIP SEAL and without loop. Made of polyethylene.

T345 Color Coding CAPINSERTTM

Made of polypropylene

The Capinsert™ is used to color code a Micrewtube® and a multitude of other Simport products according to your specific needs. It is inserted on top of the closure and has a write-on frosted area for sample identification.

Cat. #	Color	Cat. #	Color	Qty/Bag
T345B	Blue	T345P	Pink	500
T345GY	Gray	T345R	Red	500
T345G	Green	T345V	Violet	500
T345L	Lilac	T345W	White	500
T3450	Orange	T345Y	Yellow	500
* Blue, lilac, red	d, yellow and white	T345AS	Assorted*	500

Accessories

Made of acetal

A newly designed microtube rack that can be used all around the lab. Although one of the most attractive racks available today, it offers all the advantages required by the modern laboratory. Made of highly resistant acetal, it will not shatter or stain in contact with most laboratory chemicals. No coating to worry about, which can chip, peel or rust in a water bath.

The OneHand™ Microtube Rack is compact, lightweight and stackable in order to save as much space as possible. This is why it is ideal for incubators, refrigerators, freezers, under lab hoods and on bench tops. Not only is it submersible but will also sink and maintain stability without tipping over.

The OneHand™ Microtube Rack is made of 2 tiers to facilitate the insertion and stability of microtubes. Now with one hand, you can easily unscrew just about any type of microcentrifuge tube with a screw-on closure. Thanks to an innovative locking system, the Simport self-standing Micrewtubes® will securely lock in each well of the base tier and will not turn. All models of microtubes made by various manufacturers will lock in the upper tier, thanks to a series of teeth grasping the collar of the microtube. Convenient handles on each side of the rack will ensure a safe grip when carrying it around. Interlocking feet allow safe stacking. Available in 5 attractive colors. Individually wrapped.

Size: 293 mm x 115 mm x 39 mm H $(11 \frac{1}{2} \times 4 \frac{1}{2} \times 1 \frac{1}{2} \text{ in. H})$

ONE HAND OPENING AND CLOSING OF MICROTUBES

Tubes with ribs lock in place when engaged in serrated holes.



The locking base of the OneHand™ Rack locks self standing Simport Micrewtubes in place.

Cat. #	Capacity	Color	Qty/Cs
T360-50B	50	Blue	10
T360-50G	50	Green	10
T360-50L	50	Lilac	10
T360-500	50	Orange	10
T360-50Y	50	Yellow	10

T350

MICREWTUBE® Storage Box

Made of polycarbonate

COLOR YOUR WORLD with this 100-place MICREWTUBE® Storage Box for tubes ranging from 0.5 ml. to 2 ml (except 1.5 ml conical bottom tubes). Made of extra strong polycarbonate, this durable storage box is designed to be used at temperatures between -196 °C and +121 °C and is autoclavable.

A transparent cover allows the user to see the contents of the box, and is keyed to the base to prevent misalignment. Printed with a series of squares (numbered from 1 to 100), the surface accepts writing with markers, for better inventory control.

Samples can be classified more easily, thanks to a series of colored bases. A choice of four popular colors is available: blue, green, red and yellow. Size: 133 mm x 133 mm x 52 mm H (5 1/4 x 5 1/4 x 2 1/16 in. H)

Cat. #	For Micrewtubes	Color of base	Qty/Pk	Qty/Cs
T350-100B	0.5 to 2 ml	Blue	4	24
T350-100G	0.5 to 2 ml	Green	4	24
T350-100R	0.5 to 2 ml	Red	4	24
T350-100Y	0.5 to 2 ml	Yellow	4	24

CULTURE TUBES

T400 Disposable Culture Tubes T400-3AAM NON STERILE 12 X 75 mm polypropylene amber tube Made of either polystyrene or polypropylene

Ideal for use in bacteriology, RIA, coagulation and other routine laboratory procedures. Simport uses no mold release agents that could cause errors and interferences in RIA tests. Precision molding with virgin thermoplastics ensures that our tubes are uniform in size and shape as well as being chemically clean and ready to use.

The polypropylene tubes are translucent and will withstand over 3000g during centrifugation. They will also accept most common acids, solvents and alkalies at room temperature. They are almost unbreakable and can be sterilized at 120° C

Polystyrene tubes are transparent and will withstand centrifugation speeds up to 1400g. Clear plastic guarantees no danger of glass activation during testing. Polystyrene will tolerate aqueous solutions, mild bases and weak acids, but not organic solvents, aromatic or chlorinated hydrocarbons, and cannot be autoclaved.

The T400-3ALST 12 mm x 75 mm tubes are made with a specially formulated polypropylene providing a low surface tension to obtain optimum sample yield. No lubricants have to be added, thereby eliminating the danger of sample contamination.

∩tv/Ce

Color

12 x 75 mm dia. tubes

Cat. #	Material	Vol. (ml)	Color	Qty/Pk	Qty/Cs
T400-3	Polystyrene	5	Natural	250	1000
T400-3B	Polystyrene	5	Blue	250	1000
T400-3G	Polystyrene	5	Green	250	1000
T400-30	Polystyrene	5	Orange	250	1000
T400-3Y	Polystyrene	5	Yellow	250	1000
T400-3A	Polypropylene	5	Natural	250	1000
T400-3AAM	Polypropylene	5	Amber	250	1000
T400-3AB	Polypropylene	5	Blue	250	1000
T400-3AG	Polypropylene	5	Green	250	1000
T400-3A0	Polypropylene	5	Orange	250	1000
T400-3AY	Polypropylene	5	Yellow	250	1000

12 x 75 mm with low surface tension

Material

Cat #

out. II	matorial	v oi. (iiii)	00101	Qty/ OU					
T400-3ALST	Polypropylene	5	Natural	1000					
12 x 75 mm with 2-position polyethylene snap cap									
Cat. #	Material	Vol. (ml)	Color	Qty/Cs					
T400-3DS	Polystyrene	5	Natural	1000					
T400-3ADS	T400-3ADS Polypropylene		Natural	1000					

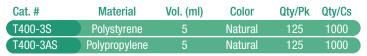
Vol. (ml)

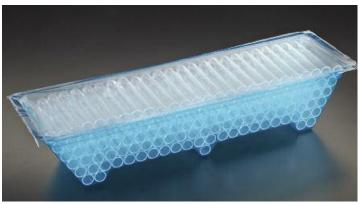
13 x 100, 16 x 100 and 17 x 95 mm dia. tubes

Cat. #	Material	Dim. (mm)	Vol. (ml)	Color	Qty/Cs
T400-4	Polystyrene	13 x 100	7.2	Natural	1000
T400-4V	Polystyrene	13 x 100	8	Natural	1000
T400-7	Polystyrene	16 x 100	12	Natural	1000
T400-10	Polystyrene	17 x 95	14	Natural	1000
T400-4A	Polypropylene	13 x 100	7.2	Natural	1000
T400-4AV	Polypropylene	13 x 100	8	Natural	1000
T400-7A	Polypropylene	16 x 100	12	Natural	1000
T400-10A	Polypropylene	17 x 95	14	Natural	1000

Have you ever considered our MultiRack™?

See S600 Series on page 143.





Disposable Culture Tubes – NON STERILE

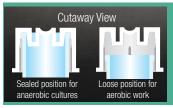
Made of either polystyrene or polypropylene

These natural color 12 x 75 mm tubes are identical to T400-3 & T400-3A but are neatly packaged with the same orientation in boxes of 125.

TUBE CLOSURES

T401

Caps and Stoppers


Made of polyethylene

Plug type push-in caps and 2-position snap caps are made of polyethylene for test tubes with outside diameters of 12. Caps T401-10N to T401-10Y are specifically designed for urine tubes T408 on page 140.

Dual position caps offer two possibilities: the closed but unsealed position where samples are maintained aerobic for microbiological procedures; and the fully sealed position where the cap is pushed tight to seal the tube for anaerobic use or for storage, transfer and centrifuge applications. Not autoclavable.

Cat. #	For tubes	Cat. #	For tubes	Color	Qty/Bag	Qty/Cs
T401-3N	12 mm	T401-10N	T408	Natural	1000	4000
T401-3B	12 mm	T401-10B	T408	Blue	1000	4000
T401-3G	12 mm	T401-10G	T408	Green	1000	4000
T401-3R	12 mm	T401-10R	T408	Red	1000	4000
T401-3W	12 mm	T401-10W	T408	White	1000	4000
T401-3Y	12 mm	T401-10Y	T408	Yellow	1000	4000

Two-Position Snap Caps

Cat. #	For tubes made of	For tubes	Color	Qty/Bag
T401-3DSPE	Polystyrene	12 mm	Natural	1000
T401-3DSPP	Polypropylene	12 mm	Natural	1000
T401-10DSPE	Polystyrene	17 mm	Natural	1000
T401-10DSPP	Polypropylene	17 mm	Natural	1000

Cat. #	For tubes	Color	Qty/Pk	Qty/Cs
T402-13N	13 mm	Natural	1000	6000
T402-13B	13 mm	Blue	1000	6000
T402-13G	13 mm	Green	1000	6000
T402-13GY	13 mm	Gray	1000	6000
T402-13L	13 mm	Lavender	1000	6000
T402-13R	13 mm	Red	1000	6000
T402-13Y	13 mm	Yellow	1000	6000

T402 VACUCAP™ Tube Closures

Made of polyethylene

An economical way to recap blood drawing tubes, disposable glass test tubes and plastic culture tubes. Flexible VACUCAPTM closures protect from aerosols of highly infectious microorganisms. They guard samples against cross-contamination and laboratory work areas against infection and spillage. Precision molded from lowdensity polyethylene, with a double-flanged seal, VACUCAP™ clamps firmly on the tube. VACUCAP™ holds fast under most rigorous procedures, including centrifugation. Not suitable for autoclaving. Designed for easy-on, easy-off use, due to the exclusive Dual Thumb Tab. Cap removal is simple and quick. VACUCAPTM closure is ideal for recapping most 13 mm and 16mm O.D. evacuated glass blood collection tubes. 13 mm style can also be used on most 12 mm plastic test tubes.

Cat. #	For tubes	Color	Qty/Pk	Qty/Cs
T402-16N	16 mm	Natural	1000	6000
T402-16B	16 mm	Blue	1000	6000
T402-16G	16 mm	Green	1000	6000
T402-16GY	16 mm	Gray	1000	6000
T402-16L	16 mm	Lavender	1000	6000
T402-16R	16 mm	Red	1000	6000
T402-16Y	16 mm	Yellow	1000	6000

T404 Flange Plug Caps

Made of polyethylene

T401-4S

These caps have two flexible flanges to ensure a leakproof seal. They will fit into test tubes and also in round cuvettes and centrifuge tubes.

Cat. #	For tubes	Cat. #	For tubes	S Color	Qty/Pk
T404-3N	12 mm	T404-10N	16 mm	Natural	1000
T404-3B	12 mm	T404-10B	16 mm	Blue	1000
T404-3G	12 mm	T404-10G	16 mm	Green	1000
T404-3R	12 mm	T404-10R	16 mm	Red	1000
T404-3W	12 mm	T404-10W	16 mm	White	1000
T404-3Y	12 mm	T404-10Y	16 mm	Yellow	1000
Cat. #	For t	ubes	Color	Qty/Pk	Qty/Cs

Natural

TUBE CLOSURES

T403

FitsAll™ Universal Cap

Made of polyethylene

Designed for easy-on, easy-off use. Cap removal is simple and quick. FitsAll™ closure is ideal for recapping most 12 mm and 16 mm 0.D. evacuated glass blood collection tubes.

Flexible FitsAllTM closures protect from aerosols of highly infectious microorganisms. They guard samples against cross-contamination and laboratory work areas against infection and spillage. Precision molded from low-density polyethylene, FitsAllTM fits firmly on the tube. FitsAllTM caps are very sturdy under most rigorous procedures, including centrifugation.

Available in 8 colors for easy sample identification. Not suitable for autoclaving.

Cat. #	For tubes	Color	Qty/Pk	Qty/Cs
T403N	12 - 16 mm	Natural	1000	10,000
T403BK	12 - 16 mm	Black	1000	10,000
T403B	12 - 16 mm	Blue	1000	10,000
T403GY	12 - 16 mm	Gray	1000	10,000
T403G	12 - 16 mm	Green	1000	10,000
T403L	12 - 16 mm	Lavender	1000	10,000
T403R	12 - 16 mm	Red	1000	10,000
T403Y	12 - 16 mm	Yellow	1000	10,000

T407 Pierce-It[™] Closure

Made of thermoplastic elastomer

These disposable closures produce a firm, leak-resistant seal for glass and plastic tubes. They will protect samples from evaporation and contamination. They can be easily applied and removed with one hand. They can be punctured to allow through-cap sampling via closed-tube instrumentation systems. Will not interfere with most common chemistry, coagulation, and drug monitoring methodologies.

They can be stored in the refrigerator, in the freezer or at room temperature. They even withstand agitation in a test tube Vortex mixer. Two sizes, 13 and 16 mm fit a variety of tubes including glass evacuated blood drawing tubes. Will also fit 12 mm I.D. cuture tubes. Available in 8 colors for easy identification.

Cat. #	For tubes	Cat. #	For tubes	Color	Qty/Pk
T407-12BK	13 mm	T407-16BK	16 mm	Black	1000
T407-12B	13 mm	T407-16B	16 mm	Blue	1000
T407-12GY	13 mm	T407-16GY	16 mm	Gray	1000
T407-12G	13 mm	T407-16G	16 mm	Green	1000
T407-12L	13 mm	T407-16L	16 mm	Lavender	1000
T407-12R	13 mm	T407-16R	16 mm	Red	1000
T407-12W	13 mm	T407-16W	16 mm	White	1000
T407-12Y	13 mm	T407-16Y	16 mm	Yellow	1000
	T407-12BK T407-12B T407-12GY T407-12G T407-12L T407-12R T407-12W	T407-12BK 13 mm T407-12B 13 mm T407-12GY 13 mm T407-12G 13 mm T407-12L 13 mm T407-12R 13 mm T407-12W 13 mm	T407-12BK 13 mm T407-16BK T407-12B 13 mm T407-16B T407-12GY 13 mm T407-16GY T407-12G 13 mm T407-16G T407-12L 13 mm T407-16L T407-12R 13 mm T407-16R T407-12W 13 mm T407-16W	T407-12BK 13 mm T407-16BK 16 mm T407-12B 13 mm T407-16B 16 mm T407-12GY 13 mm T407-16GY 16 mm T407-12G 13 mm T407-16G 16 mm T407-12L 13 mm T407-16L 16 mm T407-12R 13 mm T407-16R 16 mm T407-12W 13 mm T407-16W 16 mm	T407-12BK 13 mm T407-16BK 16 mm Black T407-12B 13 mm T407-16B 16 mm Blue T407-12GY 13 mm T407-16GY 16 mm Gray T407-12G 13 mm T407-16G 16 mm Green T407-12L 13 mm T407-16L 16 mm Lavender T407-12R 13 mm T407-16R 16 mm Red T407-12W 13 mm T407-16W 16 mm White

T417

Culture Tubes 13 x 100 mm with Screw Cap

Tube made of polystyrene / Cap made of polyethylene

These 8 ml screw cap tubes are available either sterile or non sterile. A special tamper evident cap is offered for applications needing the utmost security where sample integrity is of high importance. Tubes are made of optically clear polystyrene and can be centrifuged up to 3000 x g. These are not treated for cell culture. The sterile ones are sterilized by gamma radiation and are non pyrogenic.

Cat. #	Sterile	Tamper Evident	Qty/Bag	Qty/Cs
T417-4	No	No	Bulk	1000
T417-4S	Yes	No	125	1000
T417-4TP	No	Yes	Bulk	1000

CULTURE TUBES

Bag can be resealed

as often as needed.

T415, T416, T425 & T426 CultubesTM Sterile Culture **Tubes**

Made of polystyrene or polypropylene

These disposable sterile tubes can be used for most routine laboratory procedures. They are biologically inert and exempt from mold release agents. Precision molding with virgin thermoplastics ensures that our tubes will be uniform in size and shape. High resistance to breakage reduces danger in handling infectious or other potentially harmful cultures.

Transparent polystyrene tubes will withstand moderate centrifugation speeds (1400g) and temperatures to 70 °C. Translucent polypropylene tubes can be centrifuged at higher speeds (3000g) and resist temperatures from -190 °C to 120 °C.

Tubes are supplied with either a 2-position ribbed polyethylene cap (which can be left loose for aerobic work or sealed for anaerobic cultures) or without caps for general purpose work. Non printed Cultubes™ also available.

For individually wrapped Cultubes™ please refer to T405-1, T405-1A, T406-1 and T406-1A below.

Graduated Culture Tubes with White Marking Area

Cat. #	Size (mm)	Material	Vol	Cap	Qty/Bag	Qty/Cs
T415-2	12 x 75	PS	5	Yes	25	500
T415-3	12 x 75	PS	5	Yes	125	1000
T415-6	12 x 75	PS	5	No	125	1000
T415-2A	12 x 75	PP	5	Yes	25	500
T415-6A	12 x 75	PP	5	No	125	1000
T405-33	12 x 75	PS	5	Yes	Bulk	500

NON Graduated Culture Tubes

Cat. #	Size (mm)	Material	Vol	Cap	Qty/Bag	Qty/Cs
T425-2	12 x 75	PS	5	Yes	25	500
T425-3	12 x 75	PS	5	Yes	125	1000
T425-6	12 x 75	PS	5	No	125	1000
T425-2A	12 x 75	PP	5	Yes	25	500
T425-6A	12 x 75	PP	5	No	125	1000
T425-33	12 x 75	PS	5	Yes	Bulk	500

Tamperproof tear off seal ensures sterile

product integrity.

	Graduated Cu Cat. #	Ilture Tubes v Size (mm)	with White I Material	Markin Vol	g Area Cap	Qty/Bag	Qty/Cs
)	T416-2	17 x 95	PS	14	Yes	25	500
)	T416-3	17 x 95	PS	14	Yes	125	1000
)	T416-6	17 x 95	PS	14	No	125	1000
)	T416-2A	17 x 95	PP	14	Yes	25	500
)	T416-6A	17 x 95	PP	14	No	125	1000
	T400.00	47.05	DO	4.4	V	Б. II	500
1	T406-33	17 x 95	PS	14	Yes	Bulk	500

NON Graduated Culture Tubes

Cultubes[™] are

packaged in economical resealable ziplock bags.

Cat.#	Size (mm)	Material	Vol	Cap	Qty/Bag	Qty/Cs
T426-2	17 x 95	PS	14	Yes	25	500
T426-3	17 x 95	PS	14	Yes	125	1000
T426-6	17 x 95	PS	14	No	125	1000
T426-2A	17 x 95	PP	14	Yes	25	500
T426-6A	17 x 95	PP	14	No	125	1000
T426-33	17 x 95	PS	14	Yes	Bulk	500

Cat. #	Size (mm)	Vol. (ml)	Material	Cap	Qty/Tray	Qty/Cs
T405-1	12 x 75	5	PS	Yes	1	500
T405-2	12 x 75	5	PS	Yes	25	500
T405-3	12 x 75	5	PS	Yes	125	1000
T405-6	12 x 75	5	PS	No	125	1000
T405-1A	12 x 75	5	PP	Yes	1	500
T405-2A	12 x 75	5	PP	Yes	25	500
T405-6A	12 x 75	5	PP	No	125	1000

T405 & T406

CultubesTM Sterile Culture Tubes

Made of either polystyrene or polypropylene

With printed graduations and white marking area

For users who prefer a more compact packaging with tubes oriented horizontally. Tubes are placed in a convenient space saving plastic tray. Stateof-the-art packaging keeps your tubes neatly aligned for easing manipulation. For further details on the Cultubes, please refer to description above.

T405-1, T405-1A, T406-1 and T406-1A are all individually wrapped.

Cat. #	Size (mm)	Vol. (ml)	Material	Cap	Qty/Tray	Qty/Cs
T406-1	17 x 95	14	PS	Yes	1	500
T406-2	17 x 95	14	PS	Yes	25	500
T406-3	17 x 95	14	PS	Yes	125	1000
T406-6	17 x 95	14	PS	No	125	1000
T406-1A	17 x 95	14	PP	Yes	1	500
T406-2A	17 x 95	14	PP	Yes	25	500
T406-6A	17 x 95	14	PP	No	125	1000

SAMPLE TUBES

These leakproof tubes with silicone washer screw caps are tested at 13.8 PSI (95 kPa).

T500

Sample Tubes with Internal Threads

Made of polypropylene

- For storing and transporting biological material
- All polypropylene construction
- Withstand temperatures from -196 °C to 121 °C
- · Withstand centrifugation
- Autoclavable
- Non sterile

High quality screw cap sample tubes manufactured of translucent autoclavable polypropylene. Tube with internal threads. Caps are supplied with or without a silicone washer, to ensure a positive leakproof seal at all temperatures. A 11/4 turn of the cap is sufficient to seal the vial. Since both closures and tubes are manufactured of the same material, they have the same coefficient of expansion to guarantee an equally secure seal both at room or at low temperatures. Round bottom tubes only can be centrifuged up to 14,000g. Order caps separately.

Cat. #	Vol. (ml)	Style	Size (mm)*	Qty/Pk
T500-1T	1.2	Self standing	12.5 x 43	1000
T500-2T	2	Self standing	12.5 x 49	1000
T500-4T	4	Round bottom	12.5 x 72	1000
T500-4AT	4	Self standing	12.5 x 72	1000
T500-5T	5	Round bottom	12.5 x 92	1000

*For size only, cap is included.

T500

Screw Caps for Internal Thread Sample Tubes

Made of polypropylene

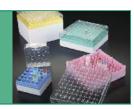
Caps are available either with or without a silicone washer between the cap and the tube to ensure a positive leakproof seal at all temperatures. Closures and tubes are both manufactured of polypropylene, providing the same coefficient of expansion. The cap features a long skirt and a superfast thread design allowing it to be removed or screwed on with a single turn. Autoclavable.

THESE SILICONE WASHER CAPS WILL GUARANTEE A POSITIVE LEAKPROOF SEAL AT ALL TEMPERATURES

/ 11 / 122 / 2/11 E/ U 11 O/ 120		
Cat. #	Color	Qty/Pk
T500NOS	Natural	1000
T500B0S	Blue	1000
T500GOS	Green	1000
T500L0S	Lilac	1000
T50000S	Orange	1000
T500R0S	Red	1000
T500Y0S	Yellow	1000
T500W0S	White	1000

Bar Code printing available.

This cap offers a positive seal using a white silicone washer.


When the cap is screwed on, the white washer is tightly secured between cap and top of tube.

Have you also considered our Transport Tubes? See T550 & T552 on pages

Have you also considered our Storage Boxes?

See T514 Series on pages 136-137.

138-139.

SAMPLE TUBES

T501

Sample Tubes with External Threads

Made of polypropylene

Designed for the storage and transportation of biological material. Manufactured from non-toxic polypropylene, the tube provides strength and clarity and exhibits some unique design features. The vial has external threads, providing a smooth and uniform inner surface, thus reducing the risk of contamination. Tubes can be autoclaved (121 °C) in upright position with caps loosened. Height of tube is with cap. Round bottom tubes only can be centrifuged up to 17,000g. Order caps separately.

Tubes only, not printed

Cat. #	Vol. (ml)	Style	Size (mm)*	Qty/Pk
T501-1AT	1.2	Self standing	12.5 x 43	1000
T501-2T	2.0	Round bottom	12.5 x 48	1000
T501-2AT	2.0	Self standing	12.5 x 49	1000
T501-3AT	3.0	Self standing	12.5 x 72	1000
T501-4T	4.0	Round bottom	12.5 x 75	1000
T501-4AT	4.0	Self standing	12.5 x 76	1000
T501-5T	5.0	Round bottom	12.5 x 92	1000
T501-5AT	5.0	Self standing	12.5 x 93	1000
			₩	

*For size only, cap is included.

These leakproof tubes with silicone washer screw caps Series T502 are tested at 13.8 PSI (95 kPa).

Tubes only, gra	duated and with Vol. (ml)	h white writing area Style	*For size only, ca Size (mm)*	ip is included. Qty/Pk
T501-1ATPR	1.2	Self standing	12.5 x 43	1000
T501-2TPR	2.0	Round bottom	12.5 x 48	1000
T501-2ATPR	2.0	Self standing	12.5 x 49	1000
T501-3ATPR	3.0	Self standing	12.5 x 72	1000
T501-4TPR	4.0	Round bottom	12.5 x 75	1000
T501-4ATPR	4.0	Self standing	12.5 x 76	1000
T501-5TPR	5.0	Round bottom	12.5 x 92	1000
T501-5ATPR	5.0	Self standing	12.5 x 93	1000

Polypropylene inner lip ensures a leakproof seal.

With a lip seal					
Cat. #	Color	Qty/Pk	Cat. #	Color	Qty/Pk
T501N	Natural	1000	T5010	Orange	1000
T501B	Blue	1000	T501R	Red	1000
T501DG	Dark Green	1000	T501W	White	1000
T501GY	Gray	1000	T501Y	Yellow	1000
T501L	Lilac	1000			

T501 & T502

Screw Caps for Sample Tubes

Made of polypropylene

Caps are available either with or without a silicone washer between the cap and the tube to ensure a positive leakproof seal at all temperatures. As for tubes, these closures are also made of polypropylene, providing the same coefficient of expansion for both, which further enhances the leakproof qualities of the vials at changing temperatures. The cap features a long skirt and a super-fast thread design that allows it to be removed or sealed with a single turn.

Specially designed silicone washer for increased safety.

Cat. #	Color	Qty/Pk	Cat. #	Color	Qty/Pk
T502N	Natural	1000	T5020	Orange	1000
T502B	Blue	1000	T502R	Red	1000
T502DG	Dark Green	1000	T502W	White	1000
T502GY	Gray	1000	T502Y	Yellow	1000
T502L	Lilac	1000			

STORAGE BOXES

T514 StoreBoxTM Storage Boxes

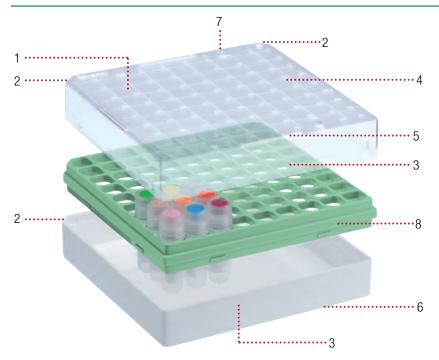
Cover made of polystyrene Base made of high impact polystyrene

Color your world with a wide variety of economical storage boxes for tubes from 1.2 ml to 10 ml.

These storage boxes are designed to be used at temperatures between -90 °C and +80 °C. Different models are available to accommodate either 25, 42, 81 or 100 sample tubes.

A transparent cover allows the user to see the contents of the box, and is keyed to the base to prevent misalignment. Printed with a series of squares (numbered from 1 to 25, 1 to 42, 1 to 81, or 1 to 100), the surface accepts writing with markers, facilitating inventory

A unique color coding system uses colored plastic grids to separate the cover from the base on the $25,\,42$ and 81-place boxes. Those made to accept 100 tubes (series 2100) have a colored base instead of a grid. Removal of vials facilitated by an innovative vial picker supplied with each storage box (not available with box T514-542). A choice of four popular pastel colors is available. Not autoclavable.


T514-542

StoreBoxTM Storage Box

Cover made of polystyrene Base made of high impact polystyrene

Will hold forty-two 10 ml Sample Tubes. Four colors are available. See page 137 for further details.

Features and benefits of Series 225, 281, 542 & 581 Storage Boxes

- Cover has numbered squares for easy sample identification
- Two corners of cover and base are cut to prevent misalignment
- 3 Writing surface for identifying base and/or cover
- 4 Vials readily visible through transparent cover
- 5 Air vents minimizing condensation
- Drain holes under base
- Stackable
- Four pastel colors available for better color-coding

A Vial Picker is included with each StoreBox™

All StoreBox™ Storage Boxes are easily

SAMPLE TUBES

StoreBox[™] Selection Guide

Please note that tubes and caps are sold separately

	_										_		-
T500-1T	T500-2T	T500-4T	T500-4AT	T500-5T	T501 -1ATPR	T <u>5</u> 01 -2TPR	T501 -2ATPR	T501 -3ATPR	T501 -4TPR	T501 -4ATPR	T501 -5TPR	T501 -5ATPR	T550 -10A
1.2	2	4	4	5	1.2	2	2	3	4	4	5	5	10
•	•				•	•	•						
•	•				•	•	•						
													•
		*	*	•				•	*		•	•	
•	•												
	•	1.2 2	1.2 2 4 • • • *	1.2 2 4 4 • • • * *	1.2 2 4 4 5 • • • * * * •	1.2 2 4 4 5 1.2 • • • • • • • • • • • • • • • • • • •	1.2 2 4 4 5 1.2 2 • • • • • • • • • * * • •	1.2 2 4 4 5 1.2 2 2 • • • • • • • * * • •	1.2 2 4 4 5 1.2 2 2 3 • • • • • • • • * * • • •	1.2 2 4 4 5 1.2 2 2 3 4 • </td <td>1.2 2 4 4 5 1.2 2 2 3 4 4 •<!--</td--><td>1.2 2 4 4 5 1.2 2 2 3 4 4 5 •<!--</td--><td>1.2 2 4 4 5 1.2 2 2 3 4 4 5 5 •<!--</td--></td></td></td>	1.2 2 4 4 5 1.2 2 2 3 4 4 • </td <td>1.2 2 4 4 5 1.2 2 2 3 4 4 5 •<!--</td--><td>1.2 2 4 4 5 1.2 2 2 3 4 4 5 5 •<!--</td--></td></td>	1.2 2 4 4 5 1.2 2 2 3 4 4 5 • </td <td>1.2 2 4 4 5 1.2 2 2 3 4 4 5 5 •<!--</td--></td>	1.2 2 4 4 5 1.2 2 2 3 4 4 5 5 • </td

^{*} For these tubes, see T314-481 polycarbonate boxes on pages 95-97.

	Cat. No.	For sample tubes	Color of base	Qty/Pk	Qty/Cs
	T514-225B	1 to 2 ml	Blue	8	48
	T514-225G	1 to 2 ml	Green	8	48
	T514-225P	1 to 2 ml	Pink	8	48
	T514-225Y	1 to 2 ml	Yellow	8	48
	Series 281: 133 mm x 133 mm x 52 Cat. No. For sample tubes		m H (5 ¹ / ₄ x 5 ¹ / ₄ x Color of base	(2 ¹ / ₁₆ in. H) Qty/Pk	Qty/Cs
- 4					

Series 225: 76 mm x 76 mm x 52 mm H (3 x 3 x 2 1/16 in. H)

Cat. No.	For sample tubes	Color of base	Qty/Pk ′	Qty/Cs
T514-281B	1 to 2 ml	Blue	4	24
T514-281G	1 to 2 ml	Green	4	24
T514-281P	1 to 2 ml	Pink	4	24
T514-281Y	1 to 2 ml	Yellow	4	24
Series 542: 133	3 mm x 133 mm x 95 m	ım H (5 ¹/4 x 5 ¹/4 x	x 3 ³ / ₄ in. H)	

	Cat. No.	For sample tubes	Color of base	Qty/PK	uty/cs
(T514-542B	10 ml	Blue	5	10
(T514-542G	10 ml	Green	5	10
(T514-542P	10 ml	Pink	5	10
(T514-542Y	10 ml	Yellow	5	10

	3 mm x 133 mm x 95 m	`	,	
Cat. No.	For sample tubes	Color of base	Qty/Pk	Qty/Cs
T514-581B	3 to 5 ml	Blue	5	10
T514-581G	3 to 5 ml	Green	5	10
T514-581P	3 to 5 ml	Pink	5	10
T514-581Y	3 to 5 ml	Yellow	5	10
Series 2100 : 1 Cat. No.	33 mm x 133 mm x 52 For sample tubes	mm H (5 ¹ / ₄ x 5 ¹ / Color of base	4 x 2 ¹ / ₁₆ H) Qty/Pk	Qty/Cs

Blue

Yellow

1 to 2 ml

1 to 2 ml

1 to 2 ml

T514-2100B

T514-2100G

T514-2100P

T514-2100Y

24

24

The cap is pierceable with pipet tips as well as with syringe needles.

T504AQX

Septum Screw Cap For Sample Tubes

Made of Polypropylene

The T504AQX screw cap incorporates a pierceable septum made of chemically resistant PTFE on the outside and silicone on the inside, both components being stable over a broad range of temperatures. The septum also acts as a silicone washer seal for better sample protection. It is especially made to fit and be used with all Simport Sample Tubes. The cap is pierceable with pipet tips as well as with syringe needles.

Cat. No. Description Qty/Pk
T504AQX Septum Screw Cap for Sample Tubes 250

RANSPORT TUBES

T550 & T552

95kPa TESTER

Self-Standing Non Sterile Transport Tubes

Tube made of polypropylene / Cap made of polyethylene

Designed for storage and transportation of biological material. Manufactured from non-toxic polypropylene, tubes provide strength and clarity and exhibit some unique design features. Five sizes are available from 5 to 30 ml. The T550-10ATPR tube has a white marking area to make sample identification more convenient. All graduated tubes are in 0.5 ml increments. They have external threads to provide a smooth and uniform inner surface.

A perfect leakproof seal is obtained by the use of a specially designed flexible sealing lip inside the polyethylene closures. Cap also feature a long skirt and a super fast thread design allowing them to be removed or sealed with a single turn. The most secure seal is provided by using a special cap (T550WOS, T552WOS) featuring an exclusive silicone washer seal. These caps however do not fit on the 7 ml tube. Tubes and caps are sold separately.

Used extensively in the following laboratories: • Protein Chemistry

- Molecular Biology
- Tissue Culture
- Pharmaceutical
- Toxicology
- Horticulture/Agriculture
- Nutritional Science
- Food and Beverage
- Chemistry
- Biology
- Quality Control
- Immunology

SCREW CAPS SOLD SEPARATELY

Specially designed inner lip ensures a leakproof seal

With silicone ... O-ring for the most secure seal

u	b	es	5	
at.	#			

Cat. #	Dimensions (mm)*	Graduations	Volume	Qty/Pk
T552-5ATTP	16.6 x 65	Etched on tube	5 ml	1000
T552-7AT	13.4 x 84	Non graduated	7 ml	1000
T550-10AT	16.6 x 85	Non graduated	10 ml	1000
T550-10ATPR	16.6 x 85	Printed on tube	10 ml	1000
T552-10ATTP	16.6 x 84	Etched on tube	10 ml	1000
T552-12ATTP	16.6 x 102	Etched on tube	12 ml	1000
T552-30AT	25.3 x 111	Etched on tube	30 ml	5 Pk of 100 500/Cs

^{*}For dimensions only, cap is included but should be ordered separately

Caps

Cat. #	Description	For Tubes	Capinsert	Qty/Pk
T550W	White Cap with Lip Seal	T550-10AT & -ATPR	No	1000
T550W0S	White Cap with Washer Seal	T550-10AT & -ATPR	No	1000
T552W	White Cap with Lip Seal	T552-5ATTP, -10ATTP, -12ATTF	No No	1000
T552-7W*	White Cap with Lip Seal	7 ml tube	Yes	1000
T552-30W*	White Cap with Lip Seal	30 ml tube	Yes	500

^{*}Will accept a Color Coding Capinsert™a (see page 128 for further details)

T553

Sterile Specimen Collection Tubes For Urinanalysis

Tube made of polypropylene / Cap made of polyethylene

Simport Urinanalysis Specimen Collection Tubes have a conical bottom to facilitate sample removal. Their design offers a skirted free-standing base. These graduated tubes contain a 75 mg tablet of boric acid in order to preserve urine specimens for up to 72 hours without refrigeration. Offered in two popular sizes. Amber color tubes are available for light sensitive specimens. A white leakproof screw cap is supplied on each tube along with a fill line label. Sterile.

Cat. #	Dimensions (mm)*	Graduations	Color	Volume	Qty/Cs
T553-10A	16.6 x 84	Etched on tube	Natural	10 ml	500
T553-10AA	16.6 x 84	Etched on tube	Amber	10 ml	500
T553-12A	16.6 x 102	Etched on tube	Natural	12 ml	500
T553-12AA	16.6 x 102	Etched on tube	Amber	12 ml	500

^{*}Dimensions include tube with cap

TRANSPORT TUBES

T552TP

Tamper Evident Self-Standing Non Sterile Transport Tubes

Tube made of polypropylene / Cap made of polyethylene

At last, a tamper evident sample and transport tube design, incorporating all the features and benefits of the Simport line of the sample tube family. They are ideal for all applications requiring a tamper evident seal in order to guarantee the utmost security and where sample integrity is of high importance:

- As a safer transport tube
- · For secure short and long term storage
- In clinical trials
- As a perfect vial for containing expensive reagents in diagnostic kits

These unique transport tubes incorporate a seal that needs to be broken in order to open it, which leaves an obvious visual indication that the vial has been opened.

The ease of operation is due in part to the closure's unique frangible band design. This produces a combination tamper evident and resistant closure system that provides benefits of safety and peace of mind.

Manufactured from non-toxic polypropylene, these tubes provide strength and clarity and exhibit some unique design features. Five sizes are available from 5 to 30 ml. They have external threads to provide a smooth and uniform inner surface.

A perfect leakproof seal is obtained by the use of a specially designed flexible sealing lip inside the polyethylene closures. The cap also features a long skirt and a super fast thread design allowing them to be removed or sealed with a single turn.

Tamper Evident Tubes

Cat. #	Dimensions (mm)*	Graduations	Volume	Qty/Pk
T552-5ATTP	16.6 x 65	Etched on tube	5 ml	1000
T552-7ATTP	13.4 x 84	Non graduated	7 ml	1000
T552-10ATTP	16.6 x 84	Etched on tube	10 ml	1000
T552-12ATTP	16.6 x 102	Etched on tube	12 ml	1000
T552-30ATTP	25.3 x 111	Etched on tube	30 ml	5 Pk of 100

^{*}For dimensions only, cap is included but should be ordered separately

SCREW CAPS SOLD SEPARATELY

Tamper E	vident Caps		
Cat. #	Description	For Tubes	Qty/Pk
T552WTP	White Cap with Lip Seal	5, 10 and 12 ml	1000
T552-7WTP*	White Cap with Lip Seal	7 ml	1000
T552-30WTP*	White Cap with Lip Seal	30 ml	500

^{*}Will accept a Capinsert™

Graduations:

T552-5ATTP: Every 0.5 ml from 1 to 5 T552-10ATTP: Every 0.5 ml from 1 to 8.5 T552-12ATTP: Every 0.5 ml from 1 to 10.5 T552-30ATTP: Every 2.5 ml from 5 to 30

Note: T552-7ATTP is not graduated

These unique transport tubes and caps incorporate a ring that needs to be broken in order to open it, which leaves an obvious visual indication that the vial has been opened.

T307 Q-SwabTM

Made of polypropylene (cap for T307-10A made of polyethylene)

The Simport Q-Swab™ are self-standing but with round bottom. The cotton swab holds securely inside the screw cap, making it ideal for specimen collection and protection from contamination. The polypropylene tubes are translucent, making it easy to see through. The cap features an exclusive silicone washer fitted inside to ensure a positive seal at any temperature. Sterile. Non graduated.

Cat. #	Volume	Dimensions	Qty/Pk	Qty/Cs
T307-5A	5 ml	12.5 x 93 mm	100	500
T307-10A	10 ml	16.6 x 85 mm	50	500

CENTRIFUGE TUBES

T408

15 ml Centrifuge Tubes

Made of polystyrene and polypropylene

Suitable for general centrifugation, urinalysis procedures and serum separation. These conical bottom tubes are chemically clean and metal free, ready to use and uniform in size and shape, measuring 17 x 120 mm. Graduations are at 0.25, 0.5, 1.0, 2.5, 5, 10, 12 and 15 ml. Polystyrene tubes resist a centrifuge speed of 1200g while polypropylene tubes resist speeds of up to 3000g. For Plug Caps, see T401-10 Series

Cat. #	Material	Size (mm)	Qty/Pk	Qty/Cs
T408	Polystyrene	17 x 120	100	1000
T408-1	Polystyrene	17 x 120	Bulk	1000
T408-2	Polypropylene	17 x 120	Bulk	1000

T410

Urine Collection System

Tube made of polystyrene

The Simport Urine Collection System contains 100 disposable 15 ml heavy-wall polystyrene tubes, snap caps, self-adhesive identification labels, and 3 oz. plastic collection cups all packed in a plastic bag (5 bags per case). Urine tubes are made of virgin polystyrene and are free of any mold release agents, metals or additives that could contaminate samples. They are made of heavy wall construction, graduated at 1/4, 1/2, 1, 2 and every 2 ml thereafter up to 12 ml, and can be safely centrifuged at speeds up to 2000g. The tubes are flared at the top to make filling and drip-free pouring easier. Designed to allow the use of midget urinometers and reagent test strips requiring only 1/4 or 1/2 ml of sample. The use of Simport tight-fitting plastic caps makes these tubes suitable for transportation in pneumatic tube systems. Size of tube: 105 mm H x 21 mm dia.

Cat. #	Description	Qty/Cs
T410	Urine collection system	500
T410-1	Urine tubes only	500
T410-2	Caps only	1000
T410-3	Tubes & closures only	500

Cat. #	Description	Material	Cap color	Packaging	Qty/Cs
T420-1	Sterile	Polystyrene	Green	Rack/25	500
T420-3	Sterile	Polypropylene	Green	Rack/25	500
T420-4	Sterile	Polypropylene	Green	Bags/25	500
T420-5	Non sterile	Polypropylene	Yellow	Rack/25	500
T420-6	Non sterile	Polystyrene	Yellow	Bulk	500
T420-7	Non sterile	Polypropylene	Yellow	Bulk	500

T420 50 ml Centrifuge Tubes

Tubes made of either polystyrene or polypropylene Caps made of high density polyethylene

These centrifuge tubes are also useful for collecting and transporting biological specimens. Leakproof characteristics are ensured by a flat top plastic screw cap with an inner sealing lip. Tubes are made of translucent polypropylene or optically clear polystyrene with molded graduations from 2.5 to 50 ml. Polypropylene tubes can be autoclaved and will resist temperatures up to 121 °C; they will also resist acids, solvents and alkalies at room temperature. They withstand centrifugation speeds of 3000g. Polystyrene tubes can tolerate aqueous solutions of mild bases or weak acids, but not organic solvents, aromatic or chlorinated hydrocarbons, and they cannot be autoclaved. They withstand centriguation speeds up to 1000g.

Tubes are available in bags or in polypropylene racks for better protection during transport, storage and for convenient laboratory use. Racks can hold up to 25 tubes. Tubes are supplied sterile with green caps or non sterile with yellow caps. External Diameter: 29 mm. Height: 118 mm.

SCINTILLATION VIALS

S207

SNAPTWIST® Scintillation Vials 6.5 ml

Made of polypropylene and high density polyethylene

This general purpose vial can be used for liquid scintillation counting, gamma counting, chromatography, sample storage and culturing. It will fit very nicely into the LKB and Packard Varisette counters. The shoulderless vial features a full width opening of 12.5 mm and the overall dimensions are 16 x 57 mm. The exclusive SNAPTWIST® closures are made of highflow polypropylene and are a true time saver.

The vials can be securely sealed by simply snapping the caps on; removal of caps requires an easy 1/4 turn (twist). The ease with which these caps can be manipulated eliminates the danger of spillage associated with other push-on/pull-off caps. A built-in positive lock prevents the cap from popping off because of a small build-up of pressure in the vial. The quality of the sealing system is such that it is not necessary to tighten the closure with pressure to achieve a leakproof seal.

Cat. #	Tube	Сар	Size (mm)	Qty/Cs
S207	Polyethylene	Polypropylene	16 x 57	1000
S207-5	Polypropylene	Polyethylene	16 x 57	1000

TO OPEN THE VIAL

TO CLOSE THE VIAL

S220

Scintillation Vials 20 ml

Vial made of polypropylene / Cap made of high density polyethylene

This shoulderless vial features a full width opening of 23 mm for ease of access, a high degree of resistance to organic solvents, and sufficient translucence so that reagent levels or the presence of filter paper can be easily detected. The unique thread design of the closure allows the vial to be sealed, and opened with an easy ¹/₄ turn. The quality of the sealing system is such that it is not necessary to tighten the closure with a lot of pressure to achieve a leakproof seal. Polyethylene closure may not be autoclaved.

Cat. #	Volume (ml)	Size (mm)	Packaging	Qty/Cs
S220	20	26 x 61	Bulk	500
S220-1	20	26 x 61	Tray/100	500

V130 **Dilution Vials**

Made of polystyrene

With optically clear parallel sides. The snap cap is spill proof but easily removed. Guaranteed to meet or exceed O.E.M. specifications. Available in specially designed vacuum formed trays or in bulk packaging. Dimensions: 35 mm x 56 mm H Volume: 25 ml

Cat. #	Packaging	Qty/Cs
V130	Trays of 50 / 20 trays per case	1000
V130-1	Bulk pack	1000

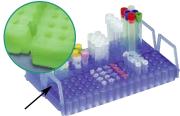
TUBE RACKS

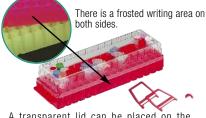
On one side, the Unirack[™] can hold it can hold up to 80 polystyrene or polyprolylene 10 and 12 mm tubes, such as 10 x 75 mm or 12 x 75 mm sizes. This rack will accommodate all types of screw cap microtubes from 0.5 to 2 ml as well as 1 to 5 ml cryogenic vials. Flip the UniRack™over and you can store up to 60 PCR or microcentrifuge tubes from 0.2 to 0.5 ml.

Units can be firmly anchored laterally to one another, thanks to special anchor pins supplied with each rack. This innovative concept will allow the user to store 80, 160, 240 and even 320 tubes of different shapes, sizes and volumes since the units can be attached to each other either on the 80- or 60- position side facing upward, thus ensuring maximum versatility.

It is supplied with two removable handles allowing for better safety characteristics. The handles of the lower rack make a perfect fit with those of the upper one, ensuring a stable unit which can easily and safely be moved around. An additional protection level is possible by using a very resistant and quite affordable transparent lid allowing a clear view of the contents.

There is a frosted area on both sides for bar coding, labeling or writing, enabling the user to identify the contents. It is easy to write on it with a felt-tip pen. Offered in a wide array of colors. Dimensions: 223 x 67 x 27 mm H (9 3/16 x 2 5/8 x 1 ¹/₁₆ in. H)


Cat. #	Color	Qty/Cs	Cat. #	Color	Qty/Cs
S500-80B	Blue	10	S500-80R	Red	10
S500-80G	Green	10	S500-80Y	Yellow	10
S500-800	Orange	10	S500-80AS	Assorted*	10
S500-80P	Pink	10	* Assorted colors orange, pink ar	s : blue, green, nd yellow	
Lid Cat. #	(Color	Qty/Cs		
S501-80	Tran	sparent	10		


The UniRack can also be placed at an angle for easier handling of tubes.

The handles of the lower rack make a perfect fit with those of the upper one, ensuring a stable unit which can easily and safely be moved

Units can be firmly anchored laterally to one another, thanks to special anchor pins supplied with each rack.

A transparent lid can be placed on the UniRack™, allowing a clear view of the contents.

S500-25 The UniRackTM Jr.

Made of polypropylene

This smaller model of the UniRack can hold up to 25 polystyrene or polyprolylene 10 and 12 mm tubes, such as 10 x 75 mm or 12 x 75 mm sizes. This rack will accommodate all types of screw cap microtubes from 0.5 to 2 ml made by manufacturers such as Simport, Sarstedt, Nalgene, Bio-Plas, SSI, Sorenson etc... as well as 1 to 5 ml

cryogenic vials. Flip the UniRack™over and you can store up to 16 PCR or microcentrifuge tubes from 0.2 to 0.5 m Supplied without handles or anchor pins.

Cat. #	Color	Qty/Cs
S500-25B	Blue	10
S500-25R	Red	10
S500-25Y	Yellow	10

Orange

S510-500 The SecuRackTM

Made of high impact polystyrene

Silicone tabs around each opening securely hold tubes in place.

This special 50-place rack will hold your 12 x 75 mm and 13 x 100 mm tubes securely in place thanks to silicone tabs surrounding the base of each tube while in the rack. This makes it very convenient to empty tube content before discarding them. Also great for holding tubes in rack securely in place when in a water bath. Each position is alpha numerically Cat. # Color Qty/Pk Qty/Cs

TUBE RACKS

S600 The MultiRackTM

Made of acetal

A newly designed tube support that can be used all around the lab. The MultiRack™ is available in three models to accommodate a full range of laboratory test tubes and centrifuge tubes up to 30 mm in diameter. Although it is one of the most attractive racks available today, it offers all the advantages required by the modern laboratory. Made of highly resistant acetal, it will not shatter or stain in contact with most laboratory aborators. chemicals. No coating to worry about, which can chip, peel or rust in a water bath.

The MultiRack $^{\mathbb{N}}$ is compact, lightweight and stackable in order to save as much space as possible. This is why it is ideal for incubators, refrigerators, freezers, under lab hoods and on bench tops. Not only is it submersible but will also sink and maintain stability without

The MultiRack $^{\text{IM}}$ is made of three-tiers to facilitate the insertion and stability of tubes. The base tier has rounded wells with drain holes. Convenient handles on each side of the rack will ensure a safe grip when carrying it around. Interlocking feet allow stacking. Series S600-13 will accommodate all tubes up to a diameter of 13 mm while series S600-16 will accept tubes up to 16 mm in diameter including 15 ml centrifuge tubes. Model S600-30 is perfect for accommodating up to 18 x 50 ml centrifuge tubes. Autoclavable at 121 °C for 20 minutes. Available in five attractive colors.Dimensions: 293 x 115 x 65 mm H $(11 \frac{1}{2} \times 4 \frac{1}{2} \times 2 \frac{1}{2} \text{ in. H})$

S610 The MultiRackTM Jr.

Made of acetal

Also available is the MultiRack™ Jr. having the same features and benefits as the larger model but will hold half the number of tubes. A great acquisition when space is more

6 models available to accommodate a full range of laboratory tubes up to 30 mm in diameter.

Rack Cat. #	Capacity	Rack Cat. #		Capacity	For tubes	Color	Qty/Pk	Qty/Cs
S600-13B	84	S610-13B		42	up to 13 mm	Blue	1	10
S600-13G	84	S610-13B	A PARCE OF	42	up to 13 mm	Green	1	10
S600-13L	84	S610-13B	ABBERT CHAN	42	up to 13 mm	Lilac	1	10
S600-130	84	S610-13B		42	up to 13 mm	Orange	1	10
S600-13Y	84	S610-13B		42	up to 13 mm	Yellow	1	10
Rack Cat. #	Capacity	Rack Cat. #		Capacity	For tubes	Color	Qty/Pk	Qty/Cs
S600-16B	99 60	S610-16B	99 2	30	up to 16 mm	Blue	1	10
S600-16G	60	S610-16B		30	up to 16 mm	Green	1	10
S600-16L	60	S610-16B		30	up to 16 mm	Lilac	1	10
S600-160	60	S610-16B		30	up to 16 mm	Orange	1	10
S600-16Y	60	S610-16B		30	up to 16 mm	Yellow	1	10
Rack Cat. #	Capacity	Rack Cat. #		Capacity	For tubes	Color	Qty/Pk	Qty/Cs
S600-30B	18	S610-30B		9	25 to 30 mm	Blue	1	10
S600-30G	18	S610-30B		9	25 to 30 mm	Green	1	10
S600-30L	18	S610-30B		9	25 to 30 mm	Lilac	1	10
S600-300	18	S610-30B		9	25 to 30 mm	Orange	1	10
S600-30Y	18	S610-30B		9	25 to 30 mm	Yellow	1	10

TWIRL'EM® Sterile Sampling Bags

Labplas TWIRL'EM® Sterile Sampling Bags provide a secure, contaminant-free pliant container that ensures dependable analysis results. You can count on TWIRL'EM® products as a proven, economical and efficient way to collect, contain and carry samples. Our sterile bags are used for environmental sampling (surface samples), carcass sampling, biomedical and pharmaceutical research, quality assurance procedures (QA/QC), food industry applications and clinical and veterinary medicine.

Labplas TWIRL'EM® Sterile Sampling Bags comply with regulatory and industry requirements:

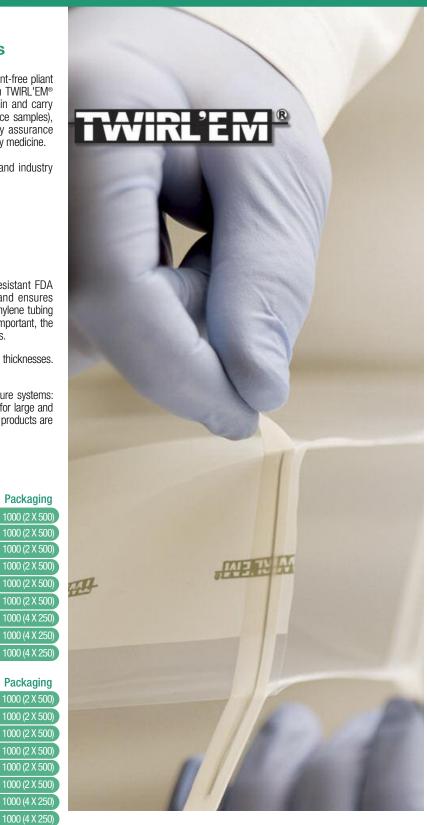
EPA (US Environment Protection Agency) FDA (US Food and Drug Administration) USDA (US Department of Agriculture) HACCP (Hazard Analysis and Critical Control Point)

CHARACTERISTICS

EPL47012

Labplas TWIRL'EM® Sterile Sampling Bags are made with highly resistant FDA approved virgin polyethylene tubing which eliminates side seals and ensures maximum bag mouth opening to facilitate sample insertion. The polyethylene tubing is extruded at 240 Celsius, which guaranties internal sterility. Equally important, the inside is never exposed to the environment during our production process.

TWIRL'EM® Sterile Sampling Bags are available in many sizes and wall thicknesses. We also manufacture both clear bags and bags with write-on strips.


TWIRL'EM® Sterile Sampling Bags come with a range of different closure systems: our standard version with two round wires; 1 round and 1 flat wire; or for large and heavy bags, a very strong closure consisting of 2 flat wires. TWIRL'EM® products are available with regular closure tabs or with safety tabs.

Sterile Sampling Bags - Safety Tabs Closure with 2 round wires, Clear

ing
500)
500)
500)
500)
500)
500)
250)

EPL-7015	3.0	76	7 x 15 in. (178 x 382)	85 oz (2500)	1000 (4 X 250)							
Closure wit	Closure with 2 round wires, Printed Cat. # mil. in micr. Size (mm) Volume (ml) Packaging											
EPR-3050	2.5	63	3 x 5 in. (76 x 127)	2 oz (60)	1000 (2 X 500)							
EPR-3070	2.5	63	3 x 7 in. (76 x 178)	4 oz (130)	1000 (2 X 500)							
EPR-3570	3.0	76	3.5 x 7 in. (89 x 178)	7 oz (210)	1000 (2 X 500)							
EPR-4590	2.5	63	4.5 x 9 in. (114 x 229)	15 oz (450)	1000 (2 X 500)							
EPR-5590	3.0	76	5.5 x 9 in. (140 x 229)	22 oz (650)	1000 (2 X 500)							
EPR45590	4.0	101	5.5 x 9 in. (140 x 229)	22 oz (650)	1000 (2 X 500)							
EPR-7012	3.0	76	7 x 12 in. (178 x 305)	55 oz (1650)	1000 (4 X 250)							
EDD 47010	4.0	101	7 v 10 in (170 v 205)	FF a= (10F0)	1000 (4 V 0F0)							

Closure with Cat. #	th 1 rou mil. in	ınd aı micr.	nd 1 flat wires, Size (mm)	Clear Volume oz (ml) Packaging
EFL-4590	2.5	63	4.5 X 9 in. (114 X 229)	15 oz (450)	1000 (2 X 500)
EFL-5590	3.0	76	5.5 x 9 in. (140 x 229)	22 oz (650)	1000 (2 X 500)
EFL-5512	3.0	76	5.5 x 12 in. (140 x 305)	36 oz (1080)	1000 (2 X 500)
EFL-7012	3.0	76	7 x 12 in. (178 x 305)	55 oz (1650)	1000 (4 X 250)
EFL47012	4.0	101	7 x 12 in. (178 x 305)	55 oz (1650)	1000 (4 X 250)
EFL-1012	4.0	101	10 x 12 in. (254 x 305)	76 oz (2250)	1000 (4 X 250)
EFL-1015	4.0	101	10 x 15 in. (254 x 382)	135 oz (4000)	1000 (4 X 250)

Cat. #	n i rou	na a	nd 1 flat wires, Size (mm)	Volume (ml)	Packaging
EFR-3070	2.5	63	3 X 7 in. (76 x 178)	4 oz (130)	1000 (2 X 500)
EFR-4590	2.5	63	4.5 x 9 in. (114 x 229)	15 oz (450)	1000 (2 X 500)
EFR-5590	3.0	76	5.5 x 9 in. (140 x 229)	22 oz (650)	1000 (2 X 500)
EFR-7012	3.0	76	7 x 12 in. (178 x 305)	55 oz (1650)	1000 (4 X 250)
EFR47012	4.0	101	7 x 12 in. (178 x 305)	55 oz (1650)	1000 (4 X 250)
EFR-1012	4.0	101	10 x 12 in. (254 x 305)	76 oz (2250)	1000 (4 X 250)
EFR-1015	4.0	101	10 x 15 in. (254 x 382)	135 oz (4000)	1000 (4 X 250)

STERILE BAGS

SECURE-T® Blender Bags

Sterility at its best! Now available with a vertical write-on strip!

Labplas SECURE-T® Blender Bags provide a malleable yet durable and contaminant-free container for the even blending of your samples. Uniform sample distribution ensures that your extraction is an accurate subset of your original sample. Applications vary from general blending purposes to sample preparation for analysis testing.

Our new optional vertical write-on strip makes it easy to label the bag for storage and you can still see the entire length of the contents.

The SECURE-T® product is available with standard 3 thousandths of an inch or optional 4 thousandths of an inch wall thickness, made to handle the most robust blending applications. We use heat extruded virgin polyethylene tubing which guarantees internal sterility and eliminates the need for side seals. In addition to superior wall strength, SECURE-T® blender bags have a patented sterile barrier tear-off top which ensures internal sterility right up until the time of use. SECURE-T® bags are available for all size blenders.

SECURE-T with Tear-Off Protection Strip - Clear

Cat.#	mil. in	micr.	Size (mm)	Volume (ml)	Packaging
SCL-4060	3.0	76	4 x 6 in. (102 x 152)	7.0 oz (205)	1000 (4 x 250)
SCL-7012	3.0	76	7 x 12 in. (178 x 305)	55 oz (1650)	1000 (4 x 250)
SCL47012	4.0	101	7 x 12 in. (178 x 305)	55 oz (1650)	1000 (4 x 250)
SCL41214	4.0	101	12 x 14 in. (305 x 356)	151 oz (4.5 L.)	500 (2 x 250)
SCL-1520	3.0	76	15 x 20 in. (381 x 508)	405 oz (12 L.)	500 (2 x 250)
SCL41520	4.0	101	15 x 20 in. (381 x 508)	405 oz (12 L.)	500 (2 x 250)

Cat.#	mil. in	micr.	Size (mm)	Volume (ml)	Packaging	
SCR-7012	3.0	76	7 x 12 in. (178 x 305)	55 oz (1650)	1000 (4 x 250)	

Open Top Sterile Blender bags -

Labplas also manufactures standard Open Top Blender Bags. These products are also made with extruded polyethylene plastic tubing and have no side seals. They come in a case of 1000 units which is subdivided into packages of 250. Our standard Blender Bags undergo gamma ray sterilisation and have no side seals. Our Blender Bags are also available with the new, optional write-on strip.

Secure-T / Sterile Blender Bags -Open Top

Cat.#	mil. in	micr.	Size (mm)	Volume (ml)	Packaging
SCL07012	3.0	76	7 x 12 in. (178 x 305)	55 oz (1650)	1000 (4 x 250)
SCL01520	3.0	76	15 x 20 in. (381 x 508)	405oz (12 L.)	500 (2 x 250)
SCR07012	3.0	76	7 x 12 in. (178 x 305)	55 oz (1650)	1000 (4 x 250)

FILTRA- BAG® - Strength and Precision Every Time!

Labplas FILTRA-BAG® Blender Bags are designed to simplify taking an aliquot when working with samples which contain large amounts of residue and/or semi-solid/solid substances. When placing an aliquot onto growth media, it's very important that the volume of the aliquot be accurate and that it be free of solid particles. This prevents pipette blockage as well as uneven plate distribution.

The FILTRA-BAG® was designed for compact samples that need to be liquefied and strained. That is why the bag is made with a polyethylene/polyester (PET) outer shell which practically eliminates the possibility of piercing the bag wall during blending. In addition, one of the walls has FILTRA-BAG® to differentiate the individual compartments, therefore simplifying how to identify which side the aliquot should be taken from after blending. Most protocols indicate that the sample be inserted in the logo side, so the aliquot is extracted from the clear side after blending.

The dividing filter membrane has 1840 holes per square inch with a pore size of 330 microns. This pore size has proven to be very effective for the majority of applications and allows for optimal solution and bacterial flow between the FILTRA-BAG® compartments during blending.

FILTRA BAG / Filtra Bags for Blender

	Cat.#	mil. in	micr.	Size (mm)	Volume (ml)	Packaging
(SCT-6090A	3.0	76	6 x 9 in. (152 x 229)	24 oz (710)	400 (4 x 100)
(SCT07012A	3.0	76	7 x 12 in. (178 x 305)	55 oz (1650)	400 (4 x 100)
(SCT-1015A	3.0	76	10 x 15 in. (254 x 381)	92 oz (2720)	200 (2 x 100)
(EFT-7012A	3.0	76	15 x 20 in. (381 x 508)	405 oz (12 L)	400 (4 x 100)

STERILE BAGS

Surface Sampling Kits: Sani-Sponge

The Labplas SANI-SPONGE kit is designed to collect samples to detect the presence of microbiological contaminations such as Listeria, Salmonella, E. coli, and other food-borne pathogens on almost any surface. These kits are widely used in the food, public health and cosmetic industries. The SANI-SPONGE kit is convenient and easy to use, and helps eliminate several time-consuming steps.

Labplas SANI-SPONGE sampling kits are produced in accordance with HACCP, USDA, ACIA and CFIA requirements.

Labplas SANI-SPONGE Sampling Kits come in two forms:

Dry Sponge

TWIRL'EM® Sterile Sampling bag with write-on strip containing a dry biocide-free cellulose sponge (1.5 x 3 x 5/8 in. when hydrated)

Wet Sponge

TWIRL'EM® Sterile Sampling bag including pre-moistened cellulose sponge, holding 10 ml of the buffer of your choice (Neutralizing buffer-sterile, DE Neutralizing buffer-sterile, Buffered peptone water-sterile)

All Labplas SANI-SPONGE TWIRL'EM® bags come with safety tabs. The punctureproof tabs eliminate the sharp points that can cause bag puncture and/or abrasions.

SANI-SPONGE kits are sterilized using gamma irradiation.

KSS-61110

SANI-SPONGE with dehydrated sponge:

- 1- Tear off the top of bag along the perforation.
- 2- Use pull-tabs to pull open the bag.
- 3- Hydrate sponge with buffer prior to removing it from the bag.
- 4- Take a sample by wiping the test surface with the hydrated sponge; put the sponge back into the bag when done.
- 5- Hold bags by wire ends and twirl 3 to 4 times too close, fold wire ends inward onto bag.

	Cat.#	Description	mil. in	micr.	Size (mm)	Volume (ml)	Packaging
(KSS-61110	Dehydrated sponge	2.5	63	4.5 x 9 in. (114 x 229)	15 oz (450)	400 (4 X 100)
(KSS-61105	Dehydrated sponge with gloves	2.5	63	4.5 x 9 in. (114 x 229)	15 oz (450)	400 (4 X 100)
ا د	KSS-61110-NE	Hydrated sponge with gloves	_s 2.5	63	4.5 x 9 in. (114 x 229)	15 oz (450)	100 (5 X 20)
(KSS-61110-DE	Hydrated sponge with glove:	s 2.5	63	4.5 x 9 in. (114 x 229)	15 oz (450)	100 (5 X 20)
(KSS-61110-PV	Hydrated sponge with gloves	2.5	63	4.5 x 9 in. (114 x 229	15 oz (450)	100 (5 X 20)

Water Sampling Kits

No more expensive rigid containers!

Labplas Water Sampling kits provide a guick and convenient way to collect chlorinated water specimens. Our sterile Water Sampling kits contain a nontoxic, nutritive tablet containing 10 mg of active sodium thiosulphate and are UPA-approved for drinking water analysis. The sodium thiosulphate instantly neutralizes halogen compounds (in this case chlorine) and enables effective bacterial or organic testing.

Labplas Water Sampling kits are designed to collect, carry and contain chlorinated water samples in aseptic conditions and are an economical and efficient alternative to rigid sampling containers.

Characteristics:

Labplas Water Sampling kits are made with highly resistant FDA-approved polyethylene. Key features are: maximum bag mouth opening to facilitate

the insertion of water sample, a convenient write-on strip and volume markings for measurements.

All Labplas Water Sampling kit TWIRL'EM® bags come with safety tabs. The puncture-proof tabs eliminate the sharp points that can cause bag puncture and/or abrasions.

Labplas Water Sampling kits are sterilized using gamma irradiation.

Cat.#	Thiosulfate Tablet	mil. in	micr.	Size (mm)	Volume oz (ml)	Packaging
KWS-21100	1 x 10 mg	2.5	63	3 x 7 in. (76x 178)	4 oz (100)	Cs/100
KWS-22200	3 x 10 mg	2.5	63	4.5 x 9 in. (114 x 229)	10 oz (300)	Cs/100

Chemical and Physical Properties

Chemical Resistance and Physical Properties of Plastics

ABS: Acrylonitrile Butadiene Styrene

Acetal: Polyoxymethylene EVA: Ethylene Vinyl Acetate HDPE: High-density polyethylene HIPS: High-Impact Polystyrene LDPE: Low-density polyethylene

PC: Polycarbonate PP: Polypropylene PS: Polystyrene

PVC: Polyvinyl Chloride

Chemical Resistance Summary

Resin	Max use temp (°F/°C)	Brittleness temp (°F/°C)	Transparency			Sterilizat	ion		Specific gravity (g/mL)	Flexibility		Permeability (approximate) cc-mm m²-24hr-Bar		
	(17 0)	(. , - ,		Autoclave	Gas	Dry heat	Radiation	Disinfectants	(9/1112)		N_2	02	CO ₂	(%)
HDPE	248/120	-148/-100	Translucent	No	Yes	No	Yes	Yes	0.95	Rigid	651	2868	8990	< 0.01
LDPE	176/80	-148/-100	Translucent	No	Yes	No	Yes	Yes	0.92	Excellent	2790	7750	41,850	< 0.01
PC	275/135	-211/-135	Transparent	Yes	Yes	No	Yes	Yes	1.20	Rigid	775	4650	16,663	0.35
PP	275/135	32/0	Translucent	Yes	Yes	No	No	Yes	0.90	Rigid	744	3720	12,400	< 0.02
PS	194/90	68/20	Transparent	No	Yes	No	Yes	Some	1.05	Rigid	853	4650	17,825	0.05
PVC	158-70	-22/-30	Transparent	No	Yes	No	No	Yes	1.34	Rigid	31-310	62	62	0.15-0.75

Physical Properties

Classes of substances; temperature 20 °C	LDPE	HDPE	PC	PP	PS	PVC
Acids, weak or dilute	Е	Е	Е	Е	Е	E
Acids, strong or concentrated	Е	Е	G	Е	E	E
Alcohols, aliphatic	E	Е	G	Е	Е	E
Aldehydes	G	G	F	G	N	N
Bases	Е	Е	N	Е	Е	Е
Esters	G	G	N	G	N	N
Hydrocarbons, aliphatic	G	F	F	G	N	Е
Hydrocarbons, aromatic	G	F	N	F	N	N
Hydrocarbons, halogenated	F	N	N	F	N	N
Ketones	G	G	N	G	N	N
Oxidizing agents, strong	F	F	N	F	N	G

- E No damage after 30 days of constant exposure.
- G Little or no damage after 30 days of constant exposure.
- F Some effect after seven days of constant exposure. Depending on the plastic, the effect may be cracking, crazing, loss of strength, discoloration. Solvents may cause softening, swelling, and permeation losses with PPCO, PP, PMP, LDPE, and HDPE; the solvent effects on these materials are
- normally reversible
- N Not recommended for continuous use. Immediate damage may occur. Depending on the plastic, the effect will be severe cracking, crazing, loss of strength, discoloration, deformation, dissolution, or permeation loss.

Reagent	ABS	Acetal	HDPE	LDPE	PC	PP	Santo- prene	Sili- cone	Reagent	ABS	Acetal	HDPE	LDPE	PC	PP	Santo- prene	S
cetaldehyde	D	A	C	C	C¹	A ¹	-	A	Benzene	D	A¹ _	D	D A1	D	D	D	
cetamide cetate Solvent	_	A _	A A	A A	D _	A¹ B¹	_	B C	Benzene Sulfonic Acid Benzoic Acid	_	В	A A	A ¹ A ¹	D B¹	D B¹	_	
cetic Acid	D	D	A	A ²	B¹	В	Α	С	Benzol	D	Ā		C¹	D	В	D	
cetic Acid 20%	C	C	Α	Α	A^1	Α	Α	В	Benzonitrile	-	-	-	-	A^1	-	-	
cetic Acid 80%	D	D	A	D B¹	B ¹	A	C B	В	Benzyl Chloride	D	A	_	_	_	C1	_	
cetic Acid, GlacialD cetic Acid, Vapors	D —	A _	D _	D.	A¹ —	D —	D _	Α	Bleach Bleaching Liquors	B -	D -	_	— А¹	_	D A¹	_	
cetic Anhydride	C1	D	С	D	D	B¹	D	Ĉ	Borax (Sodium Borate)	_	В	Α	A ²	_	В	_	
cetone, 50% water	D	-	-	-	-	Α	-	A^2	Boric Acid	_	Α	Α	A ²	-	Α	Α	
cetone	D	Α	D	B¹	D	A	A	D	Brewery Slop	-	В	-	_	-	-	_	
cetonitrile cetophenone	D —	-	A C	A D	D D	A¹ C	D -	D –	Bromine Bromoform	D -	D -	D D	D D	C¹ D	D D	_	
cetyl Bromide	_	_	_	D	_	_	_	_	Butadiene	_	A	D	D	D	C	_	
cetyl Chloride (dry)	D	D	_	Ď	D	D	Α	С	Butane	В	A	_	C¹	D	A ¹	_	
cetylene	-	Α	-	D	D	A^1	-	В	Butanol (Butyl Alcohol)	-	Α	-	B ²	B¹	A^1	В	
crylonitrile	D	-	A	A	D	A1	D	D	Butter	В	A	_		_ A1	_ A1	D	
dipic Acid Janine	_	-	A A	A A	— А	B² A	_	_	Buttermilk Butyl Amine	B -	A C¹	_	A¹ C¹	A¹ D	A¹ B¹	_	
lcohols :			^	_ ^	^	^			Butyl Ether	_	D	_	_	_	D	_	
Amyl	A^1	Α	Α	B ²	B¹	B¹	Α	D	Butyl Phthalate	-	_	Α	C¹	D	B ²	_	
Benzyl	D	Α	В	D	-	Α	D	-	Butyl acetate	-	Α	В	C¹	D	B¹	-	
Butyl	A¹	A	_	A	A^2	A D2	В	В	Butylene Butyrio Asid	-	A	_ _	B¹	D	— D1	_	
Diacetone Ethyl	— В¹	A A¹	A A	B¹ B	— В ²	B² A	— А	D B	Butyric Acid Calcium Bisulfate	D -	A _	D -	D -	D D	B¹ —	A _	
Euryi Hexyl	_ D.	A	A -	A	_ D-	A -	A -	В	Calcium Bisulfide	_	D D	_	B ¹	– U	A	_	
sobutyl	В	A	Α	A ²	_	A^1	_	A	Calcium Bisulfite	_	D	A	A¹	D	Ā	_	
sopropyl	_	Α	Α	A^2	A^2	A^2	_	Α	Calcium Bromide 38%	-	-	_	-	-	_	_	
Methyl	D	A	Α	A¹	B¹	A^2	Α	A	Calcium Carbonate	-	A	-	B¹	C ²	Α	_	
ictyl	A1	A	-	- A2	-	_	_	В	Calcium Chlorate	_ D	A	_	- D2	-	A2	_	
Propyl lyl Chloride	B¹ D	A _	— А	A ²	_	A A	A -	A _	Calcium Chloride (30% in water) Calcium Chloride (saturated)	B A	D D	A A	B ²	_	A² A	_	
minium Acetate (satured)	_	_	- -		_	A		D	Calcium Fluoride (Saturated)	_	_	_	_	_	_	-	
ıminium Chloride	Α	-	Α	B ²	A^1	Α	-	В	Calcium Hydroxide 10%	-	Α	Α	-	_	Α	_	
minium Chloride 20%	_	С	Α	B ²	A^1	Α	-	В	Calcium Hydroxide (saturated)	Α	-	Α	-	-	Α	-	
ıminium Fluoride	A	C	A	A ²	_ 	A	-	В	Calcium Hydroxide	-	D	A	A ²	D	A^2	-	
ıminium Hydroxide ıminium Nitrate	B _	A B¹	A _	A^2 A^2	B¹ A¹	A A²	_	— В	Calcium Hypochlorite 30%	— А	_	A A	_	_	A A	_	
ıminium Phosphate	_	D.	_	A-	Α.	A-	_	A	Calcium Hypochlorite (saturated) Calcium Hypochlorite	A -	D D	A	— А¹	D	A ¹	_	
minium Potassium Sulfate 10%	_	С	Α	A^2	A¹	Α	_	A	Calcium Nitrate	Α	Ď	В	A¹	A^2	A ²	_	
minium Potassium Sulfate 100%	_	Č	A	A ²	A^2	A	_	A	Calcium Oxide	D	Ā	_	B¹	-	Α	_	
uminium Sulfate	A^2	B¹	Α	A ²	Α	Α	Α	Α	Calcium Sulfate	С	D	-	B¹	A^2	Α	-	
ıms	_	_	_ D	A	-	A	-	A¹	Calcium Sulfide	_	_	_	-	-	A	-	
nines nmonia 10%	_	D D	B A	C¹ C¹	— D	B^2 A^2	_	B -	Calgon Cane Juice	_	A A	_	_	_	A C¹	_	
nmonia Nitrate	_	C	_	A	_	A		_	Carbolic Acid (Phenol)	D	D	_	D	D	В	_	
nmonia, anhydrous	D	Ď	Α	B ²	D	A	_	С	Carbon Bisulfide	_	Ā	_	_	_	D	_	
nmonia, liquid	_	D	Α	C¹	D	A^2	-	-	Carbon Dioxide (dry)	В	Α	-	A¹	-	A^2	-	
nmonium Acetate	_	-	Α	A	-	A	-	_	Carbon Dioxide (wet)	В	Α	-	A¹	_	A ²	-	
nmonium Bifluoride nmonium Carbonate	A^2 A^2	D D	– В	A ² B ²	_	A	_	_ C	Carbon Disulfide Carbon Monoxide	_	— А	D -	D A²	D –	D A	_	
nmonium Caseinate	A -	D	D —	D	_	A _		_	Carbon Tetrachloride	D D	B ¹	C	D	D	D	_	
monium Chloride	A^2	В	Α	A^2	A^2	Α	_	С	Carbon Tetrachloride (dry)	Ď	_	Č	Ď	_	D	_	
monium Fluoride 25%	D	-	Α	-	-	A^4	-	_	Carbon Tetrachloride (wet)	D	A^1	C	-	-	D	-	
monium Hydroxide	В	С	Α	A¹	D	A	-	Α	Carbonated Water	_	Α	_	A	_	В	_	
monium Glycolate	_	_ A2	A	A	В	A	-	_	Carbonic Acid	— В	B¹	B -	B ²	A¹	A	_	
monium Nitrate monium Oxalate	_	A² B	A A	A¹ _	— А¹	A A	_	_	Catsup Cellulose Acetate	D _	B _	_	_	_	A A	_	
monium Persulfate	A^2	D	A	A^2	_	A	_	D	Chloral Hydrate	Α	_	D	_	_	Ď	_	
monium Phosphate, Dibasic	A^2	B ²	-	A^2	A^2	Α	-	Α	Chloric Acid	-	D	-	-	-	_	-	
monium Phosphate, Monobasic	-	В	-	Α	-	Α	-	Α	Chlorinated Glue	-	D	-		-	_	-	
monium Phosphate, Tribasic	_ A²	B B¹	_	C A¹	— A²	A	_	A	Chlorine Water	_	D A¹	C C	B¹ D	_ C	D D	_	
monium Sulfate monium Sulfite	A-	D	A B	B ²	A- -	A A		A _	Chlorine Anhydrous Liquid Chlorine (dry)	_	D	B	D	_	D	_	
monium Thiosulfate	_	В	_	A	_	_	_	_	Chloroacetic Acid	_	Ď	Ā	D	D	C¹	D	
yl Acetate	D	B¹	_	C¹	D	B ¹	D	D	Chlorobenzene (Mono)	D	D	D	C¹	D	C¹	D	
yl Alcohol	A^1	A	Α	B ²	B¹	B¹	Α	D	Chlorobromomethane	_	-	_	Α	-	Α	_	
yl Chloride	D	A	В	D	-	D	_	D	Chloroform	D	A	D	C¹	D	C¹	D	
line line Chlorobydrato	D	A¹	В	С	D	A¹	D	В	Chlorosulfonic Acid	-	D ^	D	D	C¹	D Λ2	_	
line Chlorohydrate line Hydrochloride	_ D	_	_	— D	— D	_ D	_	— D	Chocolate Syrup Chromic Acid 5%	— В	A D	— А	— А	A B	A² D	_ D	
ifreeze	В	D D	_	– –	– U	D	_	C	Chromic Acid 5% Chromic Acid 10%	В	D D	A	A	В	D D	D	
imony Trichloride	A^2	-	В	B ²	A^2	Α	Α	_	Chromic Acid 30%	В	D	A	Ā	C	D	D	
ia Regia (80% HCl, 20% HNO ₃)	D	D	D	B¹	Ď	B¹	D	D	Chromic Acid 50%	Ď	D	A	Α	D	D	D	
chlor 1248	-	-	-	C¹	-	D	-	В	Chromium Salts	-	-	-	В	-	-	_	
matic Hydrocarbons	_ ^2	A	_ D	C D2	— Л 1	D	_ D	D	Cider Citrio Apid	_ _	A D1		В	A	A	_	
enic Acid enic Salts	A ²	D -	B -	B² B	A¹ —	Α_	B -	A _	Citric Acid Citric Oils	D –	B¹ B	A B	D -	A¹ —	A A	A _	
enic Saits Shalt	_	– В ²	_	A ¹	D D	B ¹	_	D D	Coffee	_	A	_ в	_	_	A	-	
rium Carbonate	A ²	A	_	B ²	A ²	A	_	_	Copper Chloride	A	A	_	_	_	A	_	
rium Chloride	A^2	Ā	В	A¹	Ā	Â	_	A	Copper Cyanide	_	Ä	_	B ²	D	Ä	_	
rium Cyanide	_	В	-	В	-	D	-	_	Copper Fluoborate	-	В	-	-	-	_	-	
rium Hydroxide	A^2	D	-	B ²	D	В	-	Α	Copper Nitrate	-	Α	-	B ²	D	A	-	
rium Nitrate	_ A2	B ²	_ _	B ²	D	A	-	В	Copper Sulfate 5%	-	D	A	A ²	A1	A	-	
rium Sulfate	A ²	B ²	В	B ²	D	B¹	-	A	Copper Sulfate >5%	-	D ^	Α	A ²	A¹	A	-	
rium Sulfide	A^2 A^2	A A¹	Α	B² A²	— A²	B A¹	_	A	Cream Creosote	— А	A D	— А	_	_	A	_	
er et Sugar Liquids	A ^z B	B B	A _	A ²	A ²	A¹	_	A A	Cresols	A D	D D	A D	- C1	D D	_ D	_ D	
	В	A	B	A ¹	D	D	D	D	0,00010	L D	ر ا	"		U	U	"	
nzaldehyde																	

eagent	ABS	Acetal	HDPE	LDPE	PC	PP	Santo- prene	Sili- cone	Reagent	ABS	Acetal	HDPE	LDPE	PC	PP	Santo- prene	Si
resylic Acid	-	D	-	B¹	D	A1	-	A	Hydrofluoric Acid 75%	С	D	В	C¹	D	C¹	D	
upric Acid	-	_	-	B¹	A¹	A^2	-	A1	Hydrofluoric Acid 100%	D	D	D	- D2	D	C¹	D	
anic Acid	-	D	-	— В¹	_	_ D	_	A¹	Hydrofluosilicic Acid 20%	_	В	В	B ²	_	A	-	
/clohexane	_ D	A ¹	D B	D B.	B D	D D	D _	D D	Hydrofluosilicic Acid 100%	_	A -	C	B¹ A²	_ A²	A	-	
/clohexanone	В	A A¹	A	D	A ¹	A	_	- 1	Hydrogen Gas Hydrogen Peroxide 10%	A	D D	A A	A	A ²	A A	_	
etergents extrin	A	_ A	A	_	A	A	_	A _	Hydrogen Peroxide 30%	A -	D	A	C ²	A ²	B ¹	_	
extrose	A		A	_	_	A	_	A	Hydrogen Peroxide 50%	_	D	A		A ²	B¹	_	
acetone Alcohol	_	_	A	Α	D	A ¹	_	Ď	Hydrogen Peroxide 100%	Α	D	A	C ²	Ä	B¹	_	
benzyl Ether-	_	_	_	_	_	_	_	_	Hydrogen Sulfide (aqua)	В	Č	A	Ä	A	A¹	_	
chlorobenzene	D	_	_	_	D	C1	D	D	Hydrogen Sulfide (dry)	_	_	A	A	_	A ¹	_	
chloroethane	D	A¹	С	C¹	Ď	Ď	Ď	_	Hydroguinone	D	Α	_	A	_	À	_	
esel Fuel	_	A	Ď	C¹	A^2	A¹	В	D	Ink	Ā	В	_	_	_	_	_	
ethyl Ether	D	_	D	_	D	A^1	Α	D	Hydroxyacetic Acid 70%	_	Α	_	Α	_	_	_	
ethylamine	D	В	D	D	D	A^1	-	В	lodine	D	D	В	A^1	_	С	_	
ethylene Glycol	В	A ¹	Α	B ²	B¹	A^2	Α	B¹	lodine (in alcohol)	_	D	В	В	_	_	-	
nethyl Aniline	D	D	В	-	D	D	-	D	lodoform	-	-	-	-	_	-	-	
nethyl Ether	_	-	-	-	-	-	-	Α	Isooctane	-	-	В	В	B¹	A^2	D	
nethyl Formamide	D	D	Α	Α	D	Α	Α	C	Isopropyl Acetate	_	D	В	B¹	D	B¹	-	
henyl	-		-	-	-	D	-	D	Isopropyl Ether	_	D	D	В	D	В	-	
nenyl Oxide	_	D	_	-	-	D	-	С	Isotane	_	_ A1	_	-	_ A 1	D	_	
odium Phosphate	Α	-	Α	-	-	Α	-	-	Jet Fuel (JP3, JP4, JP5, JP8)	_	A1	D	D C1	A¹	A¹	D	
S on Colta (Magnasium Culfata)	- D2	C	-	_ A2	_ A1	_	-	_	Kerosene	D	A ²	В	C¹	D	B C	D	
on Salts (Magnesium Sulfate)	B ²	B	-	A ²	A¹	A	-	A	Ketones	A	D	D	C¹	D		D	
ane anol	— В¹	A ¹ A ¹	_	— В	— В ²	D	_	D B	Lacquer Thinners	A	D D	D D	A	B D	D D	_	
noi nolamine	_ B.	D D	Α _	- В	- R ₂	A D	A _	B	Lacquers Lactic Acid	A D	B B	A	A A¹	D B	B B	_	
	_ D	A ¹	– D	_ D	_	D D	_	D R	Lactic Acid Lard	D –	A			A ₁	B ₁	— А	
r I Acetate	D	A.	A	A	_ D	A ¹	_ A	В	Laro Latex	В	B	A _	A -	Α.	A ²	A -	
Benzoate	D	A _	В	C ²	D D	B ¹	A -	D	Latex Lead Acetate	В	В	A	— А ²	_	A ¹	_	
Chloride	D	_ A¹	C	C¹	D D	D.	D D	D D	Lead Nitrate	В	_ D	A	A ⁻ A ²	_	A ²	_	
l Ether	D	A ¹	D	D	_	D	_ D	D	Lead Sulfamate	D —	A	- -	A ¹	A ¹	A ²	_	
Sulfate	_	_	_	_	_	_	_	_	Ligroin	_	B	_	A	_	A ²	_	
lene Bromide	D	_	_	D	D	D	_	D D	Lime	_	В	_	A	_	_	_	
lene Chloride	D	A¹	С	D	D	C¹	_	D	Linoleic Acid	Α	В	_	Ā	_	B¹	_	
ene Chlorohydrin	D	Ď	-	D	D	D	D	C	Litlhium Chloride	_	A	D	A ²	B¹	A ²	_	
lene Diamine	D	D	В	A	A ²	_	_	Ā	Lithium Hydroxide	_	_	D	_	D	_	_	
ene Dichloride	D	B¹	Ď	D	Ď	D	D	D	Lubricants	_	Α	В	D	A ¹	A^1	_	
ene Glycol	Ā	В	Ā	A^2	B¹	Ā	Ā	Ā	Lye: KOH Potassium Hydroxide	Α	Α	В	Α	Ď	Ä	Α	
ene Oxide	D	D	В	Α	C¹	D	-	D	Lye: NaOH Sodium Hydroxide	C	С	В	D	D	A	A	
Acids	Ā	Α	Α	D	B¹	Ā	D	С	Lye: Ca(OH) ₂ Calcium Hydroxide	_	Ď	В	A^2	D	A^2	A	
c Chloride	Α	D	D	A^1	A^2	Α	-	В	Magnesium Bisulfate	_	_	_	-	A^1	A^2	_	
c Nitrate	A ²	D	-	A^2	A¹	Α	-	С	Magnesium Carbonate	В	Α	-	В	A^1	Α	-	
c Sulfate	A ²	D	-	A^2	A^1	Α	-	В	Magnesium Chloride	В	B¹	Α	A¹	A^2	A^2	-	
ous Chloride	A ²	D	Α	A^2	D	Α	-	-	Magnesium Hydroxide	В	A	В	A^2	A^1	Α	-	
ous Sulfate	A¹	D	-	A ²	A¹	Α	-	-	Magnesium Nitrate	В	Α	В	A ²	A^1	Α	-	
poric Acid	A ²	A¹	Α	A ²	-	Α	_	-	Magnesium Oxide	-	A	_	_	-	-	-	
rine	A¹	D	D	D	С	D	D	D	Magnesium Sulfate (Epson Salts)	B ²	В	Α	A ²	A^1	Α	-	
silicic Acid	A ²	A¹	В	A ²	A¹	Α	-	-	Maleic Acid	_	A	Α	B ²	-	Α	-	
naldehyde 40%	A ²	A ²	A	D	A1	A	A	_	Maleic Anhydride	-	D	Α	D	-	D	-	
naldehyde 100%	В	A	A	В	A ²	C	A	В	Malic Acid	– D°	A	-	B ²	_ ^ 1	A¹	-	
nic Acid	D	A ²	A	D	A¹	A ¹	_ _	В	Manganese Sulfate	B^2	A¹	-	A¹	A^1	_	-	
n® 11	D	D	Α	C	-	Α	В	D	Mash	_	A	_	A	-	_	-	
n® 12	A¹	В	-	A¹	-	A ²	D	D	Mayonnaise Malamina	-	A	_	D	-	_	-	
n [®] 22	-	A	-	-	- D1	В	D	D	Melamine Mercurio Chlorido (diluto)	_ D	A	_	_	_	A	-	
n®113 n®TF	-	A	— В	-	B¹	D D	D	D D	Mercuric Chloride (dilute) Mercuric Cvanide	B B	В	A _	A	A _	B B	-	
	— В	A D	_ R	_ ^	_	D B	D _	U _	Mercuric Cyanide Mercurous Nitrate	C ²	_	_	Α	_ A²		_	
Juice Oils	D R	A	C	A B	B ¹	A	_	_ D	Mercurous Nitrate Mercury	U² B	— А	— А	A A	A² D	A B	_	
olis n Resin	D _	D	_	D	ם ח	D	A	D D	Methane	_	A	_	A -	_	A	D D	
ıral	D	A	A	D	D D	D	A	D D	Methanol (Methyl Alcohol)	D	A	— А	— А¹	B¹	A ²	A	
Acid	D	_ A	A	A	_	A	_ A	D	Methyl Acetate	D	B	C	B ¹	D	D	_ A	
oline (high-aromatic)	D	В	B	Ā	Α	Ä	D	D	Methyl Acetone	_	D	_	_	_	_	_	
oline, leaded, ref.	D	Ā	В	_	A ²	В	D	D	Methyl Acrylate	_	В	_	_	_	D	D	
lline, unleaded	D	Ä	В	_	A ²	C¹	D	Ď	Methyl Alcohol 10%	D	A	Α	A¹	B¹	A ²	A	
tin	-	В	Ā	A^2	_	Ä	_	Ā	Methyl Bromide	Ď	D	_	C¹	_	С	D	
ose	В	Ā	A	A^2	A ¹	A	-	Ä	Methyl Butyl Ketone	_	D	_	_	D	D	_	
, P.V.A.	_	A	A	A ¹	_	_	-	Ä	Methyl Cellosolve	_	D	_	_	Ď	В	_	
erin	С	A	A	A^1	A^2	Α	D	A	Methyl Chloride	D	В	-	C¹	D	D	D	
olic Acid	В	Α	-	A^2	-	Α	-	Α	Methyl Dichloride	_	D	_	-	-	D	_	
Monocyanide	-	Α	-	-	-	_	-	-	Methyl Ethyl Ketone	D	С	D	D	D	B ²	D	
e Juice	В	Α	-	В	-	-	-	Α	Methyl Ethyl Ketone Peroxide	_	-	-	-	-	_	-	
se	-	D	-	_	-	-	-	D	Methyl Isobutyl Ketone	D	-	D	С	D	Α	D	
ane	D	Α	В	B¹	В	C ²	A	D	Methyl Isopropyl Ketone	_	_	-	D	D	_	-	
ine	D	A	С	D	D	B¹	Α	D	Methyl Methacrylate	_	D	-	-	-	D	С	
ey	-	A	-	В	A¹	Α	_	A	Methylamine	D	D	_	A¹	_	A ²	_	
raulic Oil (Petro)	-	В	A	C	-	D	В	В	Methylene Chloride	D	В	D	D	D	B¹	D	
aulic Oil (Synthetic)	-		A	Α	-	D	D	В	Milk	В	A	_	A	A	В	-	
azine	-	В	D	_ D2	D	C	-	В	Mineral Spririts	D	A	D	В	С	В	-	
obromic Acid 20%	_	C	D	B ²	-	A ²	-	D	Molasses	В	A	Α	Α	_	В	-	
obromic Acid 100%	В	D	D	B¹	_ 	C¹	_	D	Monochloroacetic Acid	_	D	D	-	D	_	D	
ochloric Acid 20%	A	C	A	A ²	B¹	B ²	A	D	Monoethanolamine	_	D	-	С	_	В	-	
ochloric Acid 37%	A	C	A	B ²	D	C	A	В	Morpholine	C	-	-	- 01	D	B ²	-	
ochloric Acid 100%	Α	С	D	_ A2	D	B¹	A	D	Motor Oil	C	В	-	C¹	A	A¹	-	
rochloric Acid, Dry Gas	_	-	D	A ²	-	В	A	-	Mustard	В	C	-	A	Α	Α	-	
rocyanic Acid	В	В	Α	A^2	-	Α	A	С	Naphtha	D	A¹	_	A¹	В	В	D	
rocyanic Acid (Gas 10%)	_	C	A	_	B¹	A	A	D	Naphthalene	D	A¹	В	C	-	В	D	
	С	D	Α	A^2	D	A^2	D	D	Natural Gas	В	В		Λ .		Α	D	1
rofluoric Acid 20% rofluoric Acid 50%	C	D	Ā	A ¹	Ď	A^2	D	D	Nickel Chloride	Ä	A	В	A A	A ²	A	, D	

Series Se																		
Finds State	Reagent	ABS	Acetal	HDPE	LDPE	PC	PP			Reagent	ABS	Acetal	HDPE	LDPE	PC	PP	Santo- prene	Sili
	Nickel Nitrate	Α	-	В	Α	D	A2	-	-					-			-	-
Minter M	Nickel Sulfate	1																-
History April Ap																		_
Tempris Act Color Services Part													1					_
time And 2008.	Nitrating Acid (<15% HNO ₃)	_			-	_		_	-	- Copper Plating (Cyanide):								
Billies Australians C	Nitric Acid (5-10%)																	-
inters And Discontensed D																		_
Milestender													_			_ ^		
International	Nitrobenzene	_								- Copper Fluoborate Bath 120°F	_		_	-	_		_	-
Millous Add	Nitrogen Fertilizer	1									-	Α	-	-	_	Α	-	-
Millon Oxfox	Nitromethane											_				_		
Section Sect			-							- Copper Fyrophosphate - Copper (Flectroless)								_
Amine D D D	Oils:	_	_	_	U	_	U	_	_							, · ·		
Boy	- Aniline	D	D	_	_	_	Α	_	D		-	-	_	-	-		-	-
Service	- Anise																	-
Circumon	- Bay						l											
Content																		A
Company	- Citric	1										, ,				, ,		'
Column	- Clove	_		_			l			 Ferrous Am Sulfate Bath 150°F 		-		-	-			-
Contraced A A - A - A - A - A - A - A - A - A -	- Coconut			-	Α	_		-										-
Controlled	- Cod Liver																	-
Control Cont																		_
Council Coun	- Creosote	1								- Sulfate-Chloride Bath 160°F								-
Disself Fine (20, 50, 40, 50)	- Crude Oil		Α		-		Α	_	-	Plating Solutions, continued								1
Ginger	- Diesel Fuel (20, 30, 40, 50)	-		-			A^1				-	-	-	-	_	A	-	-
Heffarial CO II Perron	- Fuel (1, 2, 3, 5A, 5B, 6)	1	_				l				١					n		1
Highangung Diligophine																		-
Lienend			1								_	_		_				_
Mineral A A A B B A C Silling-Plating 80 - 120F A C City A D D Time-Fluoring 100F A C City A D D Time-Fluoring 100F A A C City A D D Time-Fluoring 100F A A	- Lemon		D								-	-		-	-			-
Owe	- Linseed							-										-
Gange	- Mineral																	
Palm																		_
Peanut			_															
Peppermint	- Peanut	1					l				-	-	_	-	_	Α	_	-
Represend	- Peppermint	D	D		-	_		-	-									-
Fedin	- Pine		1															-
Sesame Soad		-																1
Silicone A A A A A A A A A		_																A ¹
Soybean	- Silicone		_									Α						A ¹
Tanning	- Soybean		1			_		-										В
- Transformer	- Sperm (whale)	Α																Α
Turbine		-	_															
Delic Acid		_	1															A
Delum 10% D	Oleic Acid	D											1					_
Discription	Oleum 25%	1				_		-										-
Description	Oleum 100%					_					Α	Α	Α		D	Α	В	C
Particle A						 A1					_ D	_	_ D	U		Λ2	_	-
Paratin												A						A
Pentale	Paraffin							_ A										_
Possible	Pentane	1		_			D	В	D									-
Petrolatum	Perchloric Acid	1											1					A
Petroleum		D																A
Phenol (10%)		B B												_				D
Phosphoric Acid (<40%)	Phenol (10%)												Α	B ²		A^2	-	A
Phosphoric Acid (>40%) C	Phenol (Carbolic Acid)				D	D		-										D
Phosphoric Acid (crude)																	1	-
Phosphoric Acid (molten) D D D D D D D D D D D D D								1 1									1	
Phosphorus Calid Anhydride -																		
Phosphorus														_				_
Photographic Developer	Phosphorus	_			В			_		Salad Dressing			_				_	-
Photographic Solutions	Phosphorus Trichloride			Α	В			-										-
Phthalic Acid		В																
Phthalic Anhydride		_ P																A
A																	1	=
Plating Solutions	Picric Acid									Silicone		Α	_	-				С
- Arsenic Plating 110°F	Plating Solutions																	-
- Brass Plating: - Regular Brass Bath 100°F - A - B - A - Sodium Acetate - Sodium Acetate - Sodium Aluminate - Cu-Cd Bronze Bath 160°F - B - A - B - A - Sodium Bisulfate - Cu-Sn Bronze Bath 160°F - B - A - B - A - Sodium Bisulfate - Cu-Can Bronze Bath 100°F - A - B - A - B - A - B - A - B - A - B - A - B - A - B - A - B - A - B - A - B - A - B - A - B - A - B - A - B - A - A	- Antimony Plating 130°F				-	-											1	A
- Regular Brass Bath 100°F		-	A	-	-	-	A	-	-								1	A A
- High-Speed Brass Bath 110°F		_	۸	_	R	_	٨	_	_									I A
- Bronze Plating: Sodium Benzoate A - B A² A² A² A Cu-Cd Bronze Bath 160°F - B - A - A - A - A - A - A - A - A - A			1										1	-				-
- Cu-Cd Bronze Bath R.T.	- Bronze Plating:		′`		٦		, "ì			Sodium Benzoate		-	В		A^2			-
- Cu-Zn Bronze Bath 100°F	- Cu-Cd Bronze Bath R.T.	-			-	_											1	A
- Cadmium Plating: - Cyanide Bath 90°F	- Cu-Sn Bronze Bath 160°F									Sodium Bisulfate	Α	В	В	A ²	A ¹	A	-	Α
- Cyanide Bath $\tilde{S}0^{\circ}$ F		-	A	-	-	_	A	-	-									
- Fluoborate Bath 100°F - C - - A - -					_		٨											
					_													
	- Chromium Plating:		ľ				, "ì										1	

Reagent	ABS	Acetal	HDPE	LDPE	PC	PP	Santo- prene	Sili- cone	Reagent	ABS	Acetal	HDPE	LDPE	PC	PP	Santo- prene	Silicone
Sodium Bisulfite	А	С	В	A ²	A¹	А	-	Α	Sulfuric Acid (10-75%)	В	D	Α	A¹	B¹	A¹	В	D
Sodium Borate (Borax)	Α	_	В	A^2	A ¹	A^2	_	Α	Sulfuric Acid (75-100%)	_	_	В	С	D	C1	D	D
Sodium Bromide	В	Α	-	A^2	-	_	_	-	Sulfuric Scid (cold concentrated)	_	_	В	D	-	A^2	D	D
Sodium Carbonate	В	A ¹	Α	B ²	A^2	Α	_	Α	Sulfuric Acid (hot concentrated)	_	_	В	D	D	D	D	D
Sodium Chlorate	Α	Α	_	B ²	A ¹	Α	_	С	Sulfurous Acid	_	С	В	B ²	_	Α	_	D
Sodium Chloride	Α	A ¹	Α	A^2	A^2	Α	Α	A	Sulfuryl Chloride	_	À	_	_	_	_	_	_
Sodium Chromate	_	D	_		A^2	_		_	Tallow	_	A	Α	С	_	A ²	_	_
Sodium Cyanide	Α	Ā	В	A^2	_	Α	_	Α	Tannic Acid	_	В	Α	B ²	С	A	Α	В
Sodium Ferrocyanide		A	_	Ä	_	A	_	_	Tanning Liguors	_	В	_	A¹	_	A ¹	_	B
Sodium Fluoride	Α		_	A ²	_	A	_	_	Tartaric Acid	_	В	Α	A ¹	_	À	Α	Ā
Sodium Hydrosulfite		_	_	_	_		_	С	Tetrachloroethane	_	Ā	_		_	C	D	D
Sodium Hydroxide (20%)	В	Α	С	В	A^2	Α	Α	A ²	Tetrachloroethylene	_	Â	С	В	D	Ď	_	l D
Sodium Hydroxide (50%)	A	Â	C	В	D	Â	Â	A ¹	Tetrahvdrofuran		Â	Č	C¹	D	C^2	D	D
Sodium Hydroxide (80%)	Ā	Ď	Č	_	D	Â	Ĉ	A¹	Tin Salts	_	_	_	_	_	Ä	_	B
Sodium Hypochlorite (100%)	_	D	Č	B ²	_	В	D	В	Toluene (Toluol)	D	C¹	D	C¹	D	C ¹	D	l b
	B	D	A	A	C	A	A	В	Tomato Juice	B	В			A¹	A		D
Sodium Hypochlorite (<20%)		_			-					_		A	A¹ A				1
Sodium Hyposulfate	-	_	_	-	-	_	-	_	Trichloroacetic Acid	-	_	C		D	A	_	D
Sodium Metaphosphate	-	В	В	A¹	-	A¹	-	Α	Trichloroethane	_	A	D	_	D	C	D	D
Sodium Metasilicate	_	D	_		-	A	-	_	Trichloroethylene	D	D	D	D	-	C¹	D	D
Sodium Nitrate	_	Α	В	A ²	_	Α	-	D	Trichloropropane	D	A	-	_	-	_	-	_
Sodium Perborate	_	В	_	A¹	_	Α	-	В	Tricresylphosphate	В	C	-	B¹	-	A¹	-	C
Sodium Peroxyde	-	D	В	Α	A^2	В	-	D	Triethylamine	_	D	-	-	-	D	-	-
Sodium Polyphosphate	_	В	В	Α	-	Α	-	D	Trisodium Phosphate	B1	Α	Α	Α	-	Α	-	Α
Sodium Silicate	_	C	Α	A^2	_	Α	-	Α	Turpentine	D	A ²	В	D	D	D	D	D
Sodium Sulfate	-	В	-	A^2	A^2	Α	-	Α	Urea	В	Α	Α	Α	D	Α	-	В
Sodium Sulfide	-	В	В	A^2	D	Α	-	Α	Uric Acid	-	-	-	В	-	_	Α	-
Sodium Sulfite	_	_	В	B¹	_	A^2	-	Α	Urine	_	Α	Α	A^2	-	Α	_	-
Sodium Tetraborate	_	В	В	A^2	_	_	_	Α	Varnish	_	Α	В	Α	_	Α	_	D
Sodium Thiosulfate (hypo)	_	C1	_	A ¹	D	A^2	_	Α	Vegetable Juice	В	Α	_	_	_	_	_	В
Sorghum	_	Α	_	_	_	_	_	_	Vinegar	Α	В	Α	Α	A^2	Α	_	Α
Soy Sauce	_	Α	_	_	_	_	_	_	Vinyl Acetate	_	_	D	Α	_	B¹	_	D
Stannic Chloride	_	C	_	A^2	A ¹	Α	_	В	Vinyl Chloride	D	_	_		_	_	_	_
Stannic Fluoborate	_	Č	_	_	_	_	_	_	Water. Deionized	_	_	Α	_	_	A^2	Α	_
Stannous Chloride	_	_	_	B ²	_	Α	_	В	Water, Acid. Mine	В	A1	Α	A^2	B^2	A	Α	В
Starch	_	Α	_	В	_	A ²	_	_	Water, Distilled	В	В	A	A ²	A^2	A	A	C
Stearic Acid	_	A	Α	B¹	A¹	A ²	Α	В	Water, Fresh	Ä	A ²	A	A ²	A ²	Ä	A	B
Stoddard Solvent	В	Ä	_	C ²	A ²	Ĉ	D	Ď	Water, Salt	_	Ä	Ä	A ²	A ²	Â	Ä	B
Styrene	_	Â	_	_	D	_		D	Water, oan Weed Killers	_	Â	_	_	_	_	_	A
Sugar (Liquids)	B	A	_	_	_	A	_	A	Whev	_	A	_	_	_	_	_	A
Sulfate (Liquius)	D	D A	— А	— A ²	_	A	_	В	Whiskey and Wines	C	A	B	C	— А¹	A	_	A
Sulfur Chloride	_	D D	A -	C ¹	_	C ¹	_	C	White Liguors (Pulp Mill)	_	D A	В В	A ²	Α.		_	
	_ D	D В													A¹		A
Sulfur Dioxide	_		D	B¹	_ A:	A1	_	В	White Water (Paper Mill)	_	В	_	_ D	_	A	_	_
Sulfur Dioxide (dry)	-	В	Α	A¹	A¹	A¹	-	В	Xylene	D	A	D	В	D	В	D	D
Sulfur Hexafluoride	-	-	-	В	-	_	-	В	Zinc Chloride	A	C	Α	A¹	A ²	Α	В	В
Sulfur Trioxide	-	_	-	-	-	С	-	В	Zinc Hydrosulfite	A	С	-	-	-	-	-	-
Sulfur Trioxide (dry)	-	D	-	C¹	-	D	-	В	Zinc Sulfate	Α	С	Α	A ²	A^2	Α	-	Α
Sulfuric Acid (<10%)	В	D	Α	A^1	A1	A^2	l A	С									1

- A No effect
- B Minor effect
- C Moderate effect
- D Severe effect; not recommended
- No data available

Explanation of footnotes:

- 1 Satisfactory to 72 °F (22 °C)
- 2 Satisfactory to 120 °F (48 °C)
- 3 Satisfactory to 90 °F (32 °C)
- 4 Satisfactory to 200 °F (93 °C)

Trademarks of Simport

Cryovial Dropette Histosette Macrosette Micrewtube Urisafe

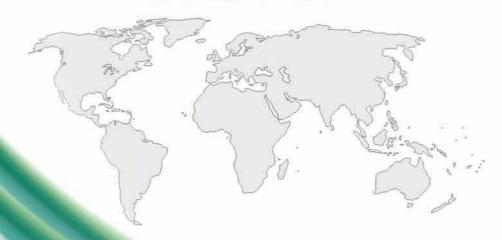
TM

AmPlate AmpliTube BioBlock BioDisposer BioTube CapInsert ChillBlock ClikLock Combi-Box Combi-Rack CoreDish CombiStore CorePicker CryoLock CryoStore CulTubes CytoSep DissecTable DispoCut DrainRack EasyDip EconoTube

EcoTainer 24 Ez-Load **FitsAll** FlexTainer HistoTainer HvdroTainer Ino-Loop **Jumbosette** LockMailer MicrewLock Micromesh Microsette MultiRack OneHand **PCRack** Pierce-It Q-Swab QuickLoad SecuRack Secure-Lock SecureSeal SecurTainer

SeraNest SimFoil SimPlate SlideFile SlideFolder SlideTrav Slimsette Snaptwist SputEm StainTray StoreBox **Swingsette** Tricorn UniMailer UniRack Unisette UriTainer VacuCap Write-On

PCR (Polymerase Chain Reaction) patents are owned by Hoffman-La-Roche Inc., Nutley, NJ


CoreTainer is a registered trademark of Beekley Corporation Cytospin is a registered trademark of Shandon Lipshaw Cyto-Tek is a registered trademark of Miles Corporation Cytopro is a registered trademark of Wescor Inc. Cytofuge is a registered trademark of Norfolk Scientific Inc.

A Family Owned Company Since 1975

Simport products
are available
through distributors
around the world

Simport®

2588 Bernard-Pilon Beloeil, Qc J3G 4S5 Canada

Telephone: (450) 464-1723 Fax: (450) 464-3394

E-mail: info@simport.com
Website: www.simport.com

Distributed by:

Printed in China Sept../2

CATALOG